This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The addition operation of a monoid as a function is an onto function. (Contributed by FL, 2-Nov-2009) (Revised by Mario Carneiro, 11-Oct-2013) (Revised by AV, 23-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndpf.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mndpf.p | ⊢ ⨣ = ( +𝑓 ‘ 𝐺 ) | ||
| Assertion | mndpfo | ⊢ ( 𝐺 ∈ Mnd → ⨣ : ( 𝐵 × 𝐵 ) –onto→ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndpf.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mndpf.p | ⊢ ⨣ = ( +𝑓 ‘ 𝐺 ) | |
| 3 | 1 2 | mndplusf | ⊢ ( 𝐺 ∈ Mnd → ⨣ : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) |
| 4 | simpr | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) | |
| 5 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 6 | 1 5 | mndidcl | ⊢ ( 𝐺 ∈ Mnd → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 7 | 6 | adantr | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ) → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 8 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 9 | 1 8 5 | mndrid | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) = 𝑥 ) |
| 10 | 9 | eqcomd | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ) → 𝑥 = ( 𝑥 ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) |
| 11 | rspceov | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ ( 0g ‘ 𝐺 ) ∈ 𝐵 ∧ 𝑥 = ( 𝑥 ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) → ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) | |
| 12 | 4 7 10 11 | syl3anc | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) |
| 13 | 1 8 2 | plusfval | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑦 ⨣ 𝑧 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) |
| 14 | 13 | eqeq2d | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑥 = ( 𝑦 ⨣ 𝑧 ) ↔ 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 15 | 14 | 2rexbiia | ⊢ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 ⨣ 𝑧 ) ↔ ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) |
| 16 | 12 15 | sylibr | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 ⨣ 𝑧 ) ) |
| 17 | 16 | ralrimiva | ⊢ ( 𝐺 ∈ Mnd → ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 ⨣ 𝑧 ) ) |
| 18 | foov | ⊢ ( ⨣ : ( 𝐵 × 𝐵 ) –onto→ 𝐵 ↔ ( ⨣ : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 ⨣ 𝑧 ) ) ) | |
| 19 | 3 17 18 | sylanbrc | ⊢ ( 𝐺 ∈ Mnd → ⨣ : ( 𝐵 × 𝐵 ) –onto→ 𝐵 ) |