This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate G has a left and right identity element. (Contributed by FL, 2-Nov-2009) (Revised by Mario Carneiro, 22-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isexid.1 | ⊢ 𝑋 = dom dom 𝐺 | |
| Assertion | isexid | ⊢ ( 𝐺 ∈ 𝐴 → ( 𝐺 ∈ ExId ↔ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isexid.1 | ⊢ 𝑋 = dom dom 𝐺 | |
| 2 | dmeq | ⊢ ( 𝑔 = 𝐺 → dom 𝑔 = dom 𝐺 ) | |
| 3 | 2 | dmeqd | ⊢ ( 𝑔 = 𝐺 → dom dom 𝑔 = dom dom 𝐺 ) |
| 4 | 3 1 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → dom dom 𝑔 = 𝑋 ) |
| 5 | oveq | ⊢ ( 𝑔 = 𝐺 → ( 𝑥 𝑔 𝑦 ) = ( 𝑥 𝐺 𝑦 ) ) | |
| 6 | 5 | eqeq1d | ⊢ ( 𝑔 = 𝐺 → ( ( 𝑥 𝑔 𝑦 ) = 𝑦 ↔ ( 𝑥 𝐺 𝑦 ) = 𝑦 ) ) |
| 7 | oveq | ⊢ ( 𝑔 = 𝐺 → ( 𝑦 𝑔 𝑥 ) = ( 𝑦 𝐺 𝑥 ) ) | |
| 8 | 7 | eqeq1d | ⊢ ( 𝑔 = 𝐺 → ( ( 𝑦 𝑔 𝑥 ) = 𝑦 ↔ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) |
| 9 | 6 8 | anbi12d | ⊢ ( 𝑔 = 𝐺 → ( ( ( 𝑥 𝑔 𝑦 ) = 𝑦 ∧ ( 𝑦 𝑔 𝑥 ) = 𝑦 ) ↔ ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) ) |
| 10 | 4 9 | raleqbidv | ⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑦 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) = 𝑦 ∧ ( 𝑦 𝑔 𝑥 ) = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) ) |
| 11 | 4 10 | rexeqbidv | ⊢ ( 𝑔 = 𝐺 → ( ∃ 𝑥 ∈ dom dom 𝑔 ∀ 𝑦 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) = 𝑦 ∧ ( 𝑦 𝑔 𝑥 ) = 𝑦 ) ↔ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) ) |
| 12 | df-exid | ⊢ ExId = { 𝑔 ∣ ∃ 𝑥 ∈ dom dom 𝑔 ∀ 𝑦 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) = 𝑦 ∧ ( 𝑦 𝑔 𝑥 ) = 𝑦 ) } | |
| 13 | 11 12 | elab2g | ⊢ ( 𝐺 ∈ 𝐴 → ( 𝐺 ∈ ExId ↔ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) ) |