This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of mndpfo as of 23-Jan-2020. An operation with a left and right identity element is onto. (Contributed by FL, 2-Nov-2009) (Revised by Mario Carneiro, 22-Dec-2013) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | opidonOLD.1 | |- X = dom dom G |
|
| Assertion | opidonOLD | |- ( G e. ( Magma i^i ExId ) -> G : ( X X. X ) -onto-> X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opidonOLD.1 | |- X = dom dom G |
|
| 2 | inss1 | |- ( Magma i^i ExId ) C_ Magma |
|
| 3 | 2 | sseli | |- ( G e. ( Magma i^i ExId ) -> G e. Magma ) |
| 4 | 1 | ismgmOLD | |- ( G e. Magma -> ( G e. Magma <-> G : ( X X. X ) --> X ) ) |
| 5 | 4 | ibi | |- ( G e. Magma -> G : ( X X. X ) --> X ) |
| 6 | 3 5 | syl | |- ( G e. ( Magma i^i ExId ) -> G : ( X X. X ) --> X ) |
| 7 | inss2 | |- ( Magma i^i ExId ) C_ ExId |
|
| 8 | 7 | sseli | |- ( G e. ( Magma i^i ExId ) -> G e. ExId ) |
| 9 | 1 | isexid | |- ( G e. ExId -> ( G e. ExId <-> E. u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) ) |
| 10 | 9 | biimpd | |- ( G e. ExId -> ( G e. ExId -> E. u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) ) |
| 11 | 8 8 10 | sylc | |- ( G e. ( Magma i^i ExId ) -> E. u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) |
| 12 | simpl | |- ( ( ( u G x ) = x /\ ( x G u ) = x ) -> ( u G x ) = x ) |
|
| 13 | 12 | ralimi | |- ( A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) -> A. x e. X ( u G x ) = x ) |
| 14 | oveq2 | |- ( x = y -> ( u G x ) = ( u G y ) ) |
|
| 15 | id | |- ( x = y -> x = y ) |
|
| 16 | 14 15 | eqeq12d | |- ( x = y -> ( ( u G x ) = x <-> ( u G y ) = y ) ) |
| 17 | 16 | rspcv | |- ( y e. X -> ( A. x e. X ( u G x ) = x -> ( u G y ) = y ) ) |
| 18 | eqcom | |- ( y = ( u G x ) <-> ( u G x ) = y ) |
|
| 19 | 14 | eqeq1d | |- ( x = y -> ( ( u G x ) = y <-> ( u G y ) = y ) ) |
| 20 | 18 19 | bitrid | |- ( x = y -> ( y = ( u G x ) <-> ( u G y ) = y ) ) |
| 21 | 20 | rspcev | |- ( ( y e. X /\ ( u G y ) = y ) -> E. x e. X y = ( u G x ) ) |
| 22 | 21 | ex | |- ( y e. X -> ( ( u G y ) = y -> E. x e. X y = ( u G x ) ) ) |
| 23 | 17 22 | syld | |- ( y e. X -> ( A. x e. X ( u G x ) = x -> E. x e. X y = ( u G x ) ) ) |
| 24 | 13 23 | syl5 | |- ( y e. X -> ( A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) -> E. x e. X y = ( u G x ) ) ) |
| 25 | 24 | reximdv | |- ( y e. X -> ( E. u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) -> E. u e. X E. x e. X y = ( u G x ) ) ) |
| 26 | 25 | impcom | |- ( ( E. u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) /\ y e. X ) -> E. u e. X E. x e. X y = ( u G x ) ) |
| 27 | 26 | ralrimiva | |- ( E. u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) -> A. y e. X E. u e. X E. x e. X y = ( u G x ) ) |
| 28 | 11 27 | syl | |- ( G e. ( Magma i^i ExId ) -> A. y e. X E. u e. X E. x e. X y = ( u G x ) ) |
| 29 | foov | |- ( G : ( X X. X ) -onto-> X <-> ( G : ( X X. X ) --> X /\ A. y e. X E. u e. X E. x e. X y = ( u G x ) ) ) |
|
| 30 | 6 28 29 | sylanbrc | |- ( G e. ( Magma i^i ExId ) -> G : ( X X. X ) -onto-> X ) |