This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A property of functions on ordinal numbers. Generalization of Theorem Schema 8E of Enderton p. 218. (Contributed by Eric Schmidt, 26-May-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | onfununi.1 | ⊢ ( Lim 𝑦 → ( 𝐹 ‘ 𝑦 ) = ∪ 𝑥 ∈ 𝑦 ( 𝐹 ‘ 𝑥 ) ) | |
| onfununi.2 | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥 ⊆ 𝑦 ) → ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ 𝑦 ) ) | ||
| Assertion | onfununi | ⊢ ( ( 𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅ ) → ( 𝐹 ‘ ∪ 𝑆 ) = ∪ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onfununi.1 | ⊢ ( Lim 𝑦 → ( 𝐹 ‘ 𝑦 ) = ∪ 𝑥 ∈ 𝑦 ( 𝐹 ‘ 𝑥 ) ) | |
| 2 | onfununi.2 | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥 ⊆ 𝑦 ) → ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ 𝑦 ) ) | |
| 3 | ssorduni | ⊢ ( 𝑆 ⊆ On → Ord ∪ 𝑆 ) | |
| 4 | 3 | ad2antrr | ⊢ ( ( ( 𝑆 ⊆ On ∧ ¬ ∪ 𝑆 ∈ 𝑆 ) ∧ 𝑆 ≠ ∅ ) → Ord ∪ 𝑆 ) |
| 5 | nelneq | ⊢ ( ( 𝑥 ∈ 𝑆 ∧ ¬ ∪ 𝑆 ∈ 𝑆 ) → ¬ 𝑥 = ∪ 𝑆 ) | |
| 6 | elssuni | ⊢ ( 𝑥 ∈ 𝑆 → 𝑥 ⊆ ∪ 𝑆 ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝑆 ⊆ On ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ⊆ ∪ 𝑆 ) |
| 8 | ssel | ⊢ ( 𝑆 ⊆ On → ( 𝑥 ∈ 𝑆 → 𝑥 ∈ On ) ) | |
| 9 | eloni | ⊢ ( 𝑥 ∈ On → Ord 𝑥 ) | |
| 10 | 8 9 | syl6 | ⊢ ( 𝑆 ⊆ On → ( 𝑥 ∈ 𝑆 → Ord 𝑥 ) ) |
| 11 | 10 | imp | ⊢ ( ( 𝑆 ⊆ On ∧ 𝑥 ∈ 𝑆 ) → Ord 𝑥 ) |
| 12 | ordsseleq | ⊢ ( ( Ord 𝑥 ∧ Ord ∪ 𝑆 ) → ( 𝑥 ⊆ ∪ 𝑆 ↔ ( 𝑥 ∈ ∪ 𝑆 ∨ 𝑥 = ∪ 𝑆 ) ) ) | |
| 13 | 11 3 12 | syl2an | ⊢ ( ( ( 𝑆 ⊆ On ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑆 ⊆ On ) → ( 𝑥 ⊆ ∪ 𝑆 ↔ ( 𝑥 ∈ ∪ 𝑆 ∨ 𝑥 = ∪ 𝑆 ) ) ) |
| 14 | 13 | anabss1 | ⊢ ( ( 𝑆 ⊆ On ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ⊆ ∪ 𝑆 ↔ ( 𝑥 ∈ ∪ 𝑆 ∨ 𝑥 = ∪ 𝑆 ) ) ) |
| 15 | 7 14 | mpbid | ⊢ ( ( 𝑆 ⊆ On ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ∈ ∪ 𝑆 ∨ 𝑥 = ∪ 𝑆 ) ) |
| 16 | 15 | ord | ⊢ ( ( 𝑆 ⊆ On ∧ 𝑥 ∈ 𝑆 ) → ( ¬ 𝑥 ∈ ∪ 𝑆 → 𝑥 = ∪ 𝑆 ) ) |
| 17 | 16 | con1d | ⊢ ( ( 𝑆 ⊆ On ∧ 𝑥 ∈ 𝑆 ) → ( ¬ 𝑥 = ∪ 𝑆 → 𝑥 ∈ ∪ 𝑆 ) ) |
| 18 | 5 17 | syl5 | ⊢ ( ( 𝑆 ⊆ On ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑥 ∈ 𝑆 ∧ ¬ ∪ 𝑆 ∈ 𝑆 ) → 𝑥 ∈ ∪ 𝑆 ) ) |
| 19 | 18 | exp4b | ⊢ ( 𝑆 ⊆ On → ( 𝑥 ∈ 𝑆 → ( 𝑥 ∈ 𝑆 → ( ¬ ∪ 𝑆 ∈ 𝑆 → 𝑥 ∈ ∪ 𝑆 ) ) ) ) |
| 20 | 19 | pm2.43d | ⊢ ( 𝑆 ⊆ On → ( 𝑥 ∈ 𝑆 → ( ¬ ∪ 𝑆 ∈ 𝑆 → 𝑥 ∈ ∪ 𝑆 ) ) ) |
| 21 | 20 | com23 | ⊢ ( 𝑆 ⊆ On → ( ¬ ∪ 𝑆 ∈ 𝑆 → ( 𝑥 ∈ 𝑆 → 𝑥 ∈ ∪ 𝑆 ) ) ) |
| 22 | 21 | imp | ⊢ ( ( 𝑆 ⊆ On ∧ ¬ ∪ 𝑆 ∈ 𝑆 ) → ( 𝑥 ∈ 𝑆 → 𝑥 ∈ ∪ 𝑆 ) ) |
| 23 | 22 | ssrdv | ⊢ ( ( 𝑆 ⊆ On ∧ ¬ ∪ 𝑆 ∈ 𝑆 ) → 𝑆 ⊆ ∪ 𝑆 ) |
| 24 | ssn0 | ⊢ ( ( 𝑆 ⊆ ∪ 𝑆 ∧ 𝑆 ≠ ∅ ) → ∪ 𝑆 ≠ ∅ ) | |
| 25 | 23 24 | sylan | ⊢ ( ( ( 𝑆 ⊆ On ∧ ¬ ∪ 𝑆 ∈ 𝑆 ) ∧ 𝑆 ≠ ∅ ) → ∪ 𝑆 ≠ ∅ ) |
| 26 | 23 | unissd | ⊢ ( ( 𝑆 ⊆ On ∧ ¬ ∪ 𝑆 ∈ 𝑆 ) → ∪ 𝑆 ⊆ ∪ ∪ 𝑆 ) |
| 27 | orduniss | ⊢ ( Ord ∪ 𝑆 → ∪ ∪ 𝑆 ⊆ ∪ 𝑆 ) | |
| 28 | 3 27 | syl | ⊢ ( 𝑆 ⊆ On → ∪ ∪ 𝑆 ⊆ ∪ 𝑆 ) |
| 29 | 28 | adantr | ⊢ ( ( 𝑆 ⊆ On ∧ ¬ ∪ 𝑆 ∈ 𝑆 ) → ∪ ∪ 𝑆 ⊆ ∪ 𝑆 ) |
| 30 | 26 29 | eqssd | ⊢ ( ( 𝑆 ⊆ On ∧ ¬ ∪ 𝑆 ∈ 𝑆 ) → ∪ 𝑆 = ∪ ∪ 𝑆 ) |
| 31 | 30 | adantr | ⊢ ( ( ( 𝑆 ⊆ On ∧ ¬ ∪ 𝑆 ∈ 𝑆 ) ∧ 𝑆 ≠ ∅ ) → ∪ 𝑆 = ∪ ∪ 𝑆 ) |
| 32 | df-lim | ⊢ ( Lim ∪ 𝑆 ↔ ( Ord ∪ 𝑆 ∧ ∪ 𝑆 ≠ ∅ ∧ ∪ 𝑆 = ∪ ∪ 𝑆 ) ) | |
| 33 | 4 25 31 32 | syl3anbrc | ⊢ ( ( ( 𝑆 ⊆ On ∧ ¬ ∪ 𝑆 ∈ 𝑆 ) ∧ 𝑆 ≠ ∅ ) → Lim ∪ 𝑆 ) |
| 34 | 33 | an32s | ⊢ ( ( ( 𝑆 ⊆ On ∧ 𝑆 ≠ ∅ ) ∧ ¬ ∪ 𝑆 ∈ 𝑆 ) → Lim ∪ 𝑆 ) |
| 35 | 34 | 3adantl1 | ⊢ ( ( ( 𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅ ) ∧ ¬ ∪ 𝑆 ∈ 𝑆 ) → Lim ∪ 𝑆 ) |
| 36 | ssonuni | ⊢ ( 𝑆 ∈ 𝑇 → ( 𝑆 ⊆ On → ∪ 𝑆 ∈ On ) ) | |
| 37 | limeq | ⊢ ( 𝑦 = ∪ 𝑆 → ( Lim 𝑦 ↔ Lim ∪ 𝑆 ) ) | |
| 38 | fveq2 | ⊢ ( 𝑦 = ∪ 𝑆 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ∪ 𝑆 ) ) | |
| 39 | iuneq1 | ⊢ ( 𝑦 = ∪ 𝑆 → ∪ 𝑥 ∈ 𝑦 ( 𝐹 ‘ 𝑥 ) = ∪ 𝑥 ∈ ∪ 𝑆 ( 𝐹 ‘ 𝑥 ) ) | |
| 40 | 38 39 | eqeq12d | ⊢ ( 𝑦 = ∪ 𝑆 → ( ( 𝐹 ‘ 𝑦 ) = ∪ 𝑥 ∈ 𝑦 ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ ∪ 𝑆 ) = ∪ 𝑥 ∈ ∪ 𝑆 ( 𝐹 ‘ 𝑥 ) ) ) |
| 41 | 37 40 | imbi12d | ⊢ ( 𝑦 = ∪ 𝑆 → ( ( Lim 𝑦 → ( 𝐹 ‘ 𝑦 ) = ∪ 𝑥 ∈ 𝑦 ( 𝐹 ‘ 𝑥 ) ) ↔ ( Lim ∪ 𝑆 → ( 𝐹 ‘ ∪ 𝑆 ) = ∪ 𝑥 ∈ ∪ 𝑆 ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 42 | 41 1 | vtoclg | ⊢ ( ∪ 𝑆 ∈ On → ( Lim ∪ 𝑆 → ( 𝐹 ‘ ∪ 𝑆 ) = ∪ 𝑥 ∈ ∪ 𝑆 ( 𝐹 ‘ 𝑥 ) ) ) |
| 43 | 36 42 | syl6 | ⊢ ( 𝑆 ∈ 𝑇 → ( 𝑆 ⊆ On → ( Lim ∪ 𝑆 → ( 𝐹 ‘ ∪ 𝑆 ) = ∪ 𝑥 ∈ ∪ 𝑆 ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 44 | 43 | imp | ⊢ ( ( 𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ) → ( Lim ∪ 𝑆 → ( 𝐹 ‘ ∪ 𝑆 ) = ∪ 𝑥 ∈ ∪ 𝑆 ( 𝐹 ‘ 𝑥 ) ) ) |
| 45 | 44 | 3adant3 | ⊢ ( ( 𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅ ) → ( Lim ∪ 𝑆 → ( 𝐹 ‘ ∪ 𝑆 ) = ∪ 𝑥 ∈ ∪ 𝑆 ( 𝐹 ‘ 𝑥 ) ) ) |
| 46 | 45 | adantr | ⊢ ( ( ( 𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅ ) ∧ ¬ ∪ 𝑆 ∈ 𝑆 ) → ( Lim ∪ 𝑆 → ( 𝐹 ‘ ∪ 𝑆 ) = ∪ 𝑥 ∈ ∪ 𝑆 ( 𝐹 ‘ 𝑥 ) ) ) |
| 47 | 35 46 | mpd | ⊢ ( ( ( 𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅ ) ∧ ¬ ∪ 𝑆 ∈ 𝑆 ) → ( 𝐹 ‘ ∪ 𝑆 ) = ∪ 𝑥 ∈ ∪ 𝑆 ( 𝐹 ‘ 𝑥 ) ) |
| 48 | eluni2 | ⊢ ( 𝑥 ∈ ∪ 𝑆 ↔ ∃ 𝑦 ∈ 𝑆 𝑥 ∈ 𝑦 ) | |
| 49 | ssel | ⊢ ( 𝑆 ⊆ On → ( 𝑦 ∈ 𝑆 → 𝑦 ∈ On ) ) | |
| 50 | 49 | anim1d | ⊢ ( 𝑆 ⊆ On → ( ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑦 ) → ( 𝑦 ∈ On ∧ 𝑥 ∈ 𝑦 ) ) ) |
| 51 | onelon | ⊢ ( ( 𝑦 ∈ On ∧ 𝑥 ∈ 𝑦 ) → 𝑥 ∈ On ) | |
| 52 | 50 51 | syl6 | ⊢ ( 𝑆 ⊆ On → ( ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑦 ) → 𝑥 ∈ On ) ) |
| 53 | 49 | adantrd | ⊢ ( 𝑆 ⊆ On → ( ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑦 ) → 𝑦 ∈ On ) ) |
| 54 | eloni | ⊢ ( 𝑦 ∈ On → Ord 𝑦 ) | |
| 55 | 49 54 | syl6 | ⊢ ( 𝑆 ⊆ On → ( 𝑦 ∈ 𝑆 → Ord 𝑦 ) ) |
| 56 | ordelss | ⊢ ( ( Ord 𝑦 ∧ 𝑥 ∈ 𝑦 ) → 𝑥 ⊆ 𝑦 ) | |
| 57 | 56 | a1i | ⊢ ( 𝑆 ⊆ On → ( ( Ord 𝑦 ∧ 𝑥 ∈ 𝑦 ) → 𝑥 ⊆ 𝑦 ) ) |
| 58 | 55 57 | syland | ⊢ ( 𝑆 ⊆ On → ( ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑦 ) → 𝑥 ⊆ 𝑦 ) ) |
| 59 | 52 53 58 | 3jcad | ⊢ ( 𝑆 ⊆ On → ( ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑦 ) → ( 𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥 ⊆ 𝑦 ) ) ) |
| 60 | 59 2 | syl6 | ⊢ ( 𝑆 ⊆ On → ( ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑦 ) → ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ 𝑦 ) ) ) |
| 61 | 60 | expd | ⊢ ( 𝑆 ⊆ On → ( 𝑦 ∈ 𝑆 → ( 𝑥 ∈ 𝑦 → ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 62 | 61 | reximdvai | ⊢ ( 𝑆 ⊆ On → ( ∃ 𝑦 ∈ 𝑆 𝑥 ∈ 𝑦 → ∃ 𝑦 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ 𝑦 ) ) ) |
| 63 | 48 62 | biimtrid | ⊢ ( 𝑆 ⊆ On → ( 𝑥 ∈ ∪ 𝑆 → ∃ 𝑦 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ 𝑦 ) ) ) |
| 64 | ssiun | ⊢ ( ∃ 𝑦 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ 𝑦 ) → ( 𝐹 ‘ 𝑥 ) ⊆ ∪ 𝑦 ∈ 𝑆 ( 𝐹 ‘ 𝑦 ) ) | |
| 65 | 63 64 | syl6 | ⊢ ( 𝑆 ⊆ On → ( 𝑥 ∈ ∪ 𝑆 → ( 𝐹 ‘ 𝑥 ) ⊆ ∪ 𝑦 ∈ 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) |
| 66 | 65 | ralrimiv | ⊢ ( 𝑆 ⊆ On → ∀ 𝑥 ∈ ∪ 𝑆 ( 𝐹 ‘ 𝑥 ) ⊆ ∪ 𝑦 ∈ 𝑆 ( 𝐹 ‘ 𝑦 ) ) |
| 67 | iunss | ⊢ ( ∪ 𝑥 ∈ ∪ 𝑆 ( 𝐹 ‘ 𝑥 ) ⊆ ∪ 𝑦 ∈ 𝑆 ( 𝐹 ‘ 𝑦 ) ↔ ∀ 𝑥 ∈ ∪ 𝑆 ( 𝐹 ‘ 𝑥 ) ⊆ ∪ 𝑦 ∈ 𝑆 ( 𝐹 ‘ 𝑦 ) ) | |
| 68 | 66 67 | sylibr | ⊢ ( 𝑆 ⊆ On → ∪ 𝑥 ∈ ∪ 𝑆 ( 𝐹 ‘ 𝑥 ) ⊆ ∪ 𝑦 ∈ 𝑆 ( 𝐹 ‘ 𝑦 ) ) |
| 69 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 70 | 69 | cbviunv | ⊢ ∪ 𝑦 ∈ 𝑆 ( 𝐹 ‘ 𝑦 ) = ∪ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) |
| 71 | 68 70 | sseqtrdi | ⊢ ( 𝑆 ⊆ On → ∪ 𝑥 ∈ ∪ 𝑆 ( 𝐹 ‘ 𝑥 ) ⊆ ∪ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) ) |
| 72 | 71 | 3ad2ant2 | ⊢ ( ( 𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅ ) → ∪ 𝑥 ∈ ∪ 𝑆 ( 𝐹 ‘ 𝑥 ) ⊆ ∪ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) ) |
| 73 | 72 | adantr | ⊢ ( ( ( 𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅ ) ∧ ¬ ∪ 𝑆 ∈ 𝑆 ) → ∪ 𝑥 ∈ ∪ 𝑆 ( 𝐹 ‘ 𝑥 ) ⊆ ∪ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) ) |
| 74 | 47 73 | eqsstrd | ⊢ ( ( ( 𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅ ) ∧ ¬ ∪ 𝑆 ∈ 𝑆 ) → ( 𝐹 ‘ ∪ 𝑆 ) ⊆ ∪ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) ) |
| 75 | 74 | ex | ⊢ ( ( 𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅ ) → ( ¬ ∪ 𝑆 ∈ 𝑆 → ( 𝐹 ‘ ∪ 𝑆 ) ⊆ ∪ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) ) ) |
| 76 | fveq2 | ⊢ ( 𝑥 = ∪ 𝑆 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ∪ 𝑆 ) ) | |
| 77 | 76 | ssiun2s | ⊢ ( ∪ 𝑆 ∈ 𝑆 → ( 𝐹 ‘ ∪ 𝑆 ) ⊆ ∪ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) ) |
| 78 | 75 77 | pm2.61d2 | ⊢ ( ( 𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅ ) → ( 𝐹 ‘ ∪ 𝑆 ) ⊆ ∪ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) ) |
| 79 | 36 | imp | ⊢ ( ( 𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ) → ∪ 𝑆 ∈ On ) |
| 80 | 79 | 3adant3 | ⊢ ( ( 𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅ ) → ∪ 𝑆 ∈ On ) |
| 81 | 8 | 3ad2ant2 | ⊢ ( ( 𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅ ) → ( 𝑥 ∈ 𝑆 → 𝑥 ∈ On ) ) |
| 82 | 81 6 | jca2 | ⊢ ( ( 𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅ ) → ( 𝑥 ∈ 𝑆 → ( 𝑥 ∈ On ∧ 𝑥 ⊆ ∪ 𝑆 ) ) ) |
| 83 | sseq2 | ⊢ ( 𝑦 = ∪ 𝑆 → ( 𝑥 ⊆ 𝑦 ↔ 𝑥 ⊆ ∪ 𝑆 ) ) | |
| 84 | 83 | anbi2d | ⊢ ( 𝑦 = ∪ 𝑆 → ( ( 𝑥 ∈ On ∧ 𝑥 ⊆ 𝑦 ) ↔ ( 𝑥 ∈ On ∧ 𝑥 ⊆ ∪ 𝑆 ) ) ) |
| 85 | 38 | sseq2d | ⊢ ( 𝑦 = ∪ 𝑆 → ( ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ ∪ 𝑆 ) ) ) |
| 86 | 84 85 | imbi12d | ⊢ ( 𝑦 = ∪ 𝑆 → ( ( ( 𝑥 ∈ On ∧ 𝑥 ⊆ 𝑦 ) → ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ 𝑦 ) ) ↔ ( ( 𝑥 ∈ On ∧ 𝑥 ⊆ ∪ 𝑆 ) → ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ ∪ 𝑆 ) ) ) ) |
| 87 | 2 | 3com12 | ⊢ ( ( 𝑦 ∈ On ∧ 𝑥 ∈ On ∧ 𝑥 ⊆ 𝑦 ) → ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ 𝑦 ) ) |
| 88 | 87 | 3expib | ⊢ ( 𝑦 ∈ On → ( ( 𝑥 ∈ On ∧ 𝑥 ⊆ 𝑦 ) → ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ 𝑦 ) ) ) |
| 89 | 86 88 | vtoclga | ⊢ ( ∪ 𝑆 ∈ On → ( ( 𝑥 ∈ On ∧ 𝑥 ⊆ ∪ 𝑆 ) → ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ ∪ 𝑆 ) ) ) |
| 90 | 80 82 89 | sylsyld | ⊢ ( ( 𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅ ) → ( 𝑥 ∈ 𝑆 → ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ ∪ 𝑆 ) ) ) |
| 91 | 90 | ralrimiv | ⊢ ( ( 𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅ ) → ∀ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ ∪ 𝑆 ) ) |
| 92 | iunss | ⊢ ( ∪ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ ∪ 𝑆 ) ↔ ∀ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ ∪ 𝑆 ) ) | |
| 93 | 91 92 | sylibr | ⊢ ( ( 𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅ ) → ∪ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ ∪ 𝑆 ) ) |
| 94 | 78 93 | eqssd | ⊢ ( ( 𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅ ) → ( 𝐹 ‘ ∪ 𝑆 ) = ∪ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) ) |