This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for onfrALT . (Contributed by Alan Sare, 22-Jul-2012) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onfrALTlem4 | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑥 ) = ∅ ) ↔ ( 𝑦 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑦 ) = ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcan | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑥 ) = ∅ ) ↔ ( [ 𝑦 / 𝑥 ] 𝑥 ∈ 𝑎 ∧ [ 𝑦 / 𝑥 ] ( 𝑎 ∩ 𝑥 ) = ∅ ) ) | |
| 2 | sbcel1v | ⊢ ( [ 𝑦 / 𝑥 ] 𝑥 ∈ 𝑎 ↔ 𝑦 ∈ 𝑎 ) | |
| 3 | vex | ⊢ 𝑦 ∈ V | |
| 4 | sbceqg | ⊢ ( 𝑦 ∈ V → ( [ 𝑦 / 𝑥 ] ( 𝑎 ∩ 𝑥 ) = ∅ ↔ ⦋ 𝑦 / 𝑥 ⦌ ( 𝑎 ∩ 𝑥 ) = ⦋ 𝑦 / 𝑥 ⦌ ∅ ) ) | |
| 5 | 3 4 | ax-mp | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝑎 ∩ 𝑥 ) = ∅ ↔ ⦋ 𝑦 / 𝑥 ⦌ ( 𝑎 ∩ 𝑥 ) = ⦋ 𝑦 / 𝑥 ⦌ ∅ ) |
| 6 | csbin | ⊢ ⦋ 𝑦 / 𝑥 ⦌ ( 𝑎 ∩ 𝑥 ) = ( ⦋ 𝑦 / 𝑥 ⦌ 𝑎 ∩ ⦋ 𝑦 / 𝑥 ⦌ 𝑥 ) | |
| 7 | csbconstg | ⊢ ( 𝑦 ∈ V → ⦋ 𝑦 / 𝑥 ⦌ 𝑎 = 𝑎 ) | |
| 8 | 3 7 | ax-mp | ⊢ ⦋ 𝑦 / 𝑥 ⦌ 𝑎 = 𝑎 |
| 9 | csbvarg | ⊢ ( 𝑦 ∈ V → ⦋ 𝑦 / 𝑥 ⦌ 𝑥 = 𝑦 ) | |
| 10 | 3 9 | ax-mp | ⊢ ⦋ 𝑦 / 𝑥 ⦌ 𝑥 = 𝑦 |
| 11 | 8 10 | ineq12i | ⊢ ( ⦋ 𝑦 / 𝑥 ⦌ 𝑎 ∩ ⦋ 𝑦 / 𝑥 ⦌ 𝑥 ) = ( 𝑎 ∩ 𝑦 ) |
| 12 | 6 11 | eqtri | ⊢ ⦋ 𝑦 / 𝑥 ⦌ ( 𝑎 ∩ 𝑥 ) = ( 𝑎 ∩ 𝑦 ) |
| 13 | csb0 | ⊢ ⦋ 𝑦 / 𝑥 ⦌ ∅ = ∅ | |
| 14 | 12 13 | eqeq12i | ⊢ ( ⦋ 𝑦 / 𝑥 ⦌ ( 𝑎 ∩ 𝑥 ) = ⦋ 𝑦 / 𝑥 ⦌ ∅ ↔ ( 𝑎 ∩ 𝑦 ) = ∅ ) |
| 15 | 5 14 | bitri | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝑎 ∩ 𝑥 ) = ∅ ↔ ( 𝑎 ∩ 𝑦 ) = ∅ ) |
| 16 | 2 15 | anbi12i | ⊢ ( ( [ 𝑦 / 𝑥 ] 𝑥 ∈ 𝑎 ∧ [ 𝑦 / 𝑥 ] ( 𝑎 ∩ 𝑥 ) = ∅ ) ↔ ( 𝑦 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑦 ) = ∅ ) ) |
| 17 | 1 16 | bitri | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑥 ) = ∅ ) ↔ ( 𝑦 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑦 ) = ∅ ) ) |