This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute proper substitution into a class through an intersection relation. (Contributed by Alan Sare, 22-Jul-2012) (Revised by NM, 18-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbin | ⊢ ⦋ 𝐴 / 𝑥 ⦌ ( 𝐵 ∩ 𝐶 ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1 | ⊢ ( 𝑦 = 𝐴 → ⦋ 𝑦 / 𝑥 ⦌ ( 𝐵 ∩ 𝐶 ) = ⦋ 𝐴 / 𝑥 ⦌ ( 𝐵 ∩ 𝐶 ) ) | |
| 2 | csbeq1 | ⊢ ( 𝑦 = 𝐴 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) | |
| 3 | csbeq1 | ⊢ ( 𝑦 = 𝐴 → ⦋ 𝑦 / 𝑥 ⦌ 𝐶 = ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) | |
| 4 | 2 3 | ineq12d | ⊢ ( 𝑦 = 𝐴 → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
| 5 | 1 4 | eqeq12d | ⊢ ( 𝑦 = 𝐴 → ( ⦋ 𝑦 / 𝑥 ⦌ ( 𝐵 ∩ 𝐶 ) = ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ↔ ⦋ 𝐴 / 𝑥 ⦌ ( 𝐵 ∩ 𝐶 ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) ) |
| 6 | vex | ⊢ 𝑦 ∈ V | |
| 7 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 | |
| 8 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐶 | |
| 9 | 7 8 | nfin | ⊢ Ⅎ 𝑥 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
| 10 | csbeq1a | ⊢ ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) | |
| 11 | csbeq1a | ⊢ ( 𝑥 = 𝑦 → 𝐶 = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) | |
| 12 | 10 11 | ineq12d | ⊢ ( 𝑥 = 𝑦 → ( 𝐵 ∩ 𝐶 ) = ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) |
| 13 | 6 9 12 | csbief | ⊢ ⦋ 𝑦 / 𝑥 ⦌ ( 𝐵 ∩ 𝐶 ) = ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
| 14 | 5 13 | vtoclg | ⊢ ( 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ ( 𝐵 ∩ 𝐶 ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
| 15 | csbprc | ⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ ( 𝐵 ∩ 𝐶 ) = ∅ ) | |
| 16 | csbprc | ⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ∅ ) | |
| 17 | csbprc | ⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = ∅ ) | |
| 18 | 16 17 | ineq12d | ⊢ ( ¬ 𝐴 ∈ V → ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) = ( ∅ ∩ ∅ ) ) |
| 19 | in0 | ⊢ ( ∅ ∩ ∅ ) = ∅ | |
| 20 | 18 19 | eqtr2di | ⊢ ( ¬ 𝐴 ∈ V → ∅ = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
| 21 | 15 20 | eqtrd | ⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ ( 𝐵 ∩ 𝐶 ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
| 22 | 14 21 | pm2.61i | ⊢ ⦋ 𝐴 / 𝑥 ⦌ ( 𝐵 ∩ 𝐶 ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |