This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for onfrALT . (Contributed by Alan Sare, 22-Jul-2012) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onfrALTlem4 | |- ( [. y / x ]. ( x e. a /\ ( a i^i x ) = (/) ) <-> ( y e. a /\ ( a i^i y ) = (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcan | |- ( [. y / x ]. ( x e. a /\ ( a i^i x ) = (/) ) <-> ( [. y / x ]. x e. a /\ [. y / x ]. ( a i^i x ) = (/) ) ) |
|
| 2 | sbcel1v | |- ( [. y / x ]. x e. a <-> y e. a ) |
|
| 3 | vex | |- y e. _V |
|
| 4 | sbceqg | |- ( y e. _V -> ( [. y / x ]. ( a i^i x ) = (/) <-> [_ y / x ]_ ( a i^i x ) = [_ y / x ]_ (/) ) ) |
|
| 5 | 3 4 | ax-mp | |- ( [. y / x ]. ( a i^i x ) = (/) <-> [_ y / x ]_ ( a i^i x ) = [_ y / x ]_ (/) ) |
| 6 | csbin | |- [_ y / x ]_ ( a i^i x ) = ( [_ y / x ]_ a i^i [_ y / x ]_ x ) |
|
| 7 | csbconstg | |- ( y e. _V -> [_ y / x ]_ a = a ) |
|
| 8 | 3 7 | ax-mp | |- [_ y / x ]_ a = a |
| 9 | csbvarg | |- ( y e. _V -> [_ y / x ]_ x = y ) |
|
| 10 | 3 9 | ax-mp | |- [_ y / x ]_ x = y |
| 11 | 8 10 | ineq12i | |- ( [_ y / x ]_ a i^i [_ y / x ]_ x ) = ( a i^i y ) |
| 12 | 6 11 | eqtri | |- [_ y / x ]_ ( a i^i x ) = ( a i^i y ) |
| 13 | csb0 | |- [_ y / x ]_ (/) = (/) |
|
| 14 | 12 13 | eqeq12i | |- ( [_ y / x ]_ ( a i^i x ) = [_ y / x ]_ (/) <-> ( a i^i y ) = (/) ) |
| 15 | 5 14 | bitri | |- ( [. y / x ]. ( a i^i x ) = (/) <-> ( a i^i y ) = (/) ) |
| 16 | 2 15 | anbi12i | |- ( ( [. y / x ]. x e. a /\ [. y / x ]. ( a i^i x ) = (/) ) <-> ( y e. a /\ ( a i^i y ) = (/) ) ) |
| 17 | 1 16 | bitri | |- ( [. y / x ]. ( x e. a /\ ( a i^i x ) = (/) ) <-> ( y e. a /\ ( a i^i y ) = (/) ) ) |