This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for onfrALT . (Contributed by Alan Sare, 22-Jul-2012) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onfrALTlem3 | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ∃ 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid | ⊢ ( 𝑎 ∩ 𝑥 ) ⊆ ( 𝑎 ∩ 𝑥 ) | |
| 2 | simpr | ⊢ ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) | |
| 3 | 2 | a1i | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) ) |
| 4 | df-ne | ⊢ ( ( 𝑎 ∩ 𝑥 ) ≠ ∅ ↔ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) | |
| 5 | 3 4 | imbitrrdi | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ( 𝑎 ∩ 𝑥 ) ≠ ∅ ) ) |
| 6 | pm3.2 | ⊢ ( ( 𝑎 ∩ 𝑥 ) ⊆ ( 𝑎 ∩ 𝑥 ) → ( ( 𝑎 ∩ 𝑥 ) ≠ ∅ → ( ( 𝑎 ∩ 𝑥 ) ⊆ ( 𝑎 ∩ 𝑥 ) ∧ ( 𝑎 ∩ 𝑥 ) ≠ ∅ ) ) ) | |
| 7 | 1 5 6 | mpsylsyld | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ( ( 𝑎 ∩ 𝑥 ) ⊆ ( 𝑎 ∩ 𝑥 ) ∧ ( 𝑎 ∩ 𝑥 ) ≠ ∅ ) ) ) |
| 8 | vex | ⊢ 𝑥 ∈ V | |
| 9 | 8 | inex2 | ⊢ ( 𝑎 ∩ 𝑥 ) ∈ V |
| 10 | inss2 | ⊢ ( 𝑎 ∩ 𝑥 ) ⊆ 𝑥 | |
| 11 | simpl | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → 𝑎 ⊆ On ) | |
| 12 | simpl | ⊢ ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → 𝑥 ∈ 𝑎 ) | |
| 13 | ssel | ⊢ ( 𝑎 ⊆ On → ( 𝑥 ∈ 𝑎 → 𝑥 ∈ On ) ) | |
| 14 | 11 12 13 | syl2im | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → 𝑥 ∈ On ) ) |
| 15 | eloni | ⊢ ( 𝑥 ∈ On → Ord 𝑥 ) | |
| 16 | 14 15 | syl6 | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → Ord 𝑥 ) ) |
| 17 | ordwe | ⊢ ( Ord 𝑥 → E We 𝑥 ) | |
| 18 | 16 17 | syl6 | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → E We 𝑥 ) ) |
| 19 | wess | ⊢ ( ( 𝑎 ∩ 𝑥 ) ⊆ 𝑥 → ( E We 𝑥 → E We ( 𝑎 ∩ 𝑥 ) ) ) | |
| 20 | 10 18 19 | mpsylsyld | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → E We ( 𝑎 ∩ 𝑥 ) ) ) |
| 21 | wefr | ⊢ ( E We ( 𝑎 ∩ 𝑥 ) → E Fr ( 𝑎 ∩ 𝑥 ) ) | |
| 22 | 20 21 | syl6 | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → E Fr ( 𝑎 ∩ 𝑥 ) ) ) |
| 23 | dfepfr | ⊢ ( E Fr ( 𝑎 ∩ 𝑥 ) ↔ ∀ 𝑏 ( ( 𝑏 ⊆ ( 𝑎 ∩ 𝑥 ) ∧ 𝑏 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑏 ( 𝑏 ∩ 𝑦 ) = ∅ ) ) | |
| 24 | 22 23 | imbitrdi | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ∀ 𝑏 ( ( 𝑏 ⊆ ( 𝑎 ∩ 𝑥 ) ∧ 𝑏 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑏 ( 𝑏 ∩ 𝑦 ) = ∅ ) ) ) |
| 25 | spsbc | ⊢ ( ( 𝑎 ∩ 𝑥 ) ∈ V → ( ∀ 𝑏 ( ( 𝑏 ⊆ ( 𝑎 ∩ 𝑥 ) ∧ 𝑏 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑏 ( 𝑏 ∩ 𝑦 ) = ∅ ) → [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] ( ( 𝑏 ⊆ ( 𝑎 ∩ 𝑥 ) ∧ 𝑏 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑏 ( 𝑏 ∩ 𝑦 ) = ∅ ) ) ) | |
| 26 | 9 24 25 | mpsylsyld | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] ( ( 𝑏 ⊆ ( 𝑎 ∩ 𝑥 ) ∧ 𝑏 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑏 ( 𝑏 ∩ 𝑦 ) = ∅ ) ) ) |
| 27 | onfrALTlem5 | ⊢ ( [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] ( ( 𝑏 ⊆ ( 𝑎 ∩ 𝑥 ) ∧ 𝑏 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑏 ( 𝑏 ∩ 𝑦 ) = ∅ ) ↔ ( ( ( 𝑎 ∩ 𝑥 ) ⊆ ( 𝑎 ∩ 𝑥 ) ∧ ( 𝑎 ∩ 𝑥 ) ≠ ∅ ) → ∃ 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ) | |
| 28 | 26 27 | imbitrdi | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ( ( ( 𝑎 ∩ 𝑥 ) ⊆ ( 𝑎 ∩ 𝑥 ) ∧ ( 𝑎 ∩ 𝑥 ) ≠ ∅ ) → ∃ 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ) ) |
| 29 | 7 28 | mpdd | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ∃ 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ) |