This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternate way of saying that the membership relation is well-founded. (Contributed by NM, 17-Feb-2004) (Revised by Mario Carneiro, 23-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfepfr | ⊢ ( E Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffr2 | ⊢ ( E Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 { 𝑧 ∈ 𝑥 ∣ 𝑧 E 𝑦 } = ∅ ) ) | |
| 2 | epel | ⊢ ( 𝑧 E 𝑦 ↔ 𝑧 ∈ 𝑦 ) | |
| 3 | 2 | rabbii | ⊢ { 𝑧 ∈ 𝑥 ∣ 𝑧 E 𝑦 } = { 𝑧 ∈ 𝑥 ∣ 𝑧 ∈ 𝑦 } |
| 4 | dfin5 | ⊢ ( 𝑥 ∩ 𝑦 ) = { 𝑧 ∈ 𝑥 ∣ 𝑧 ∈ 𝑦 } | |
| 5 | 3 4 | eqtr4i | ⊢ { 𝑧 ∈ 𝑥 ∣ 𝑧 E 𝑦 } = ( 𝑥 ∩ 𝑦 ) |
| 6 | 5 | eqeq1i | ⊢ ( { 𝑧 ∈ 𝑥 ∣ 𝑧 E 𝑦 } = ∅ ↔ ( 𝑥 ∩ 𝑦 ) = ∅ ) |
| 7 | 6 | rexbii | ⊢ ( ∃ 𝑦 ∈ 𝑥 { 𝑧 ∈ 𝑥 ∣ 𝑧 E 𝑦 } = ∅ ↔ ∃ 𝑦 ∈ 𝑥 ( 𝑥 ∩ 𝑦 ) = ∅ ) |
| 8 | 7 | imbi2i | ⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 { 𝑧 ∈ 𝑥 ∣ 𝑧 E 𝑦 } = ∅ ) ↔ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
| 9 | 8 | albii | ⊢ ( ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 { 𝑧 ∈ 𝑥 ∣ 𝑧 E 𝑦 } = ∅ ) ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
| 10 | 1 9 | bitri | ⊢ ( E Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |