This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Adding to both sides of an inequality in _om . (Contributed by Scott Fenton, 16-Apr-2012) (Revised by Mario Carneiro, 12-May-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnawordi | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐴 ⊆ 𝐵 → ( 𝐴 +o 𝐶 ) ⊆ ( 𝐵 +o 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑥 = ∅ → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o ∅ ) ) | |
| 2 | oveq2 | ⊢ ( 𝑥 = ∅ → ( 𝐵 +o 𝑥 ) = ( 𝐵 +o ∅ ) ) | |
| 3 | 1 2 | sseq12d | ⊢ ( 𝑥 = ∅ → ( ( 𝐴 +o 𝑥 ) ⊆ ( 𝐵 +o 𝑥 ) ↔ ( 𝐴 +o ∅ ) ⊆ ( 𝐵 +o ∅ ) ) ) |
| 4 | 3 | imbi2d | ⊢ ( 𝑥 = ∅ → ( ( 𝐴 ⊆ 𝐵 → ( 𝐴 +o 𝑥 ) ⊆ ( 𝐵 +o 𝑥 ) ) ↔ ( 𝐴 ⊆ 𝐵 → ( 𝐴 +o ∅ ) ⊆ ( 𝐵 +o ∅ ) ) ) ) |
| 5 | 4 | imbi2d | ⊢ ( 𝑥 = ∅ → ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ⊆ 𝐵 → ( 𝐴 +o 𝑥 ) ⊆ ( 𝐵 +o 𝑥 ) ) ) ↔ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ⊆ 𝐵 → ( 𝐴 +o ∅ ) ⊆ ( 𝐵 +o ∅ ) ) ) ) ) |
| 6 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o 𝑦 ) ) | |
| 7 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐵 +o 𝑥 ) = ( 𝐵 +o 𝑦 ) ) | |
| 8 | 6 7 | sseq12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 +o 𝑥 ) ⊆ ( 𝐵 +o 𝑥 ) ↔ ( 𝐴 +o 𝑦 ) ⊆ ( 𝐵 +o 𝑦 ) ) ) |
| 9 | 8 | imbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ⊆ 𝐵 → ( 𝐴 +o 𝑥 ) ⊆ ( 𝐵 +o 𝑥 ) ) ↔ ( 𝐴 ⊆ 𝐵 → ( 𝐴 +o 𝑦 ) ⊆ ( 𝐵 +o 𝑦 ) ) ) ) |
| 10 | 9 | imbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ⊆ 𝐵 → ( 𝐴 +o 𝑥 ) ⊆ ( 𝐵 +o 𝑥 ) ) ) ↔ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ⊆ 𝐵 → ( 𝐴 +o 𝑦 ) ⊆ ( 𝐵 +o 𝑦 ) ) ) ) ) |
| 11 | oveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o suc 𝑦 ) ) | |
| 12 | oveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐵 +o 𝑥 ) = ( 𝐵 +o suc 𝑦 ) ) | |
| 13 | 11 12 | sseq12d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 +o 𝑥 ) ⊆ ( 𝐵 +o 𝑥 ) ↔ ( 𝐴 +o suc 𝑦 ) ⊆ ( 𝐵 +o suc 𝑦 ) ) ) |
| 14 | 13 | imbi2d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ⊆ 𝐵 → ( 𝐴 +o 𝑥 ) ⊆ ( 𝐵 +o 𝑥 ) ) ↔ ( 𝐴 ⊆ 𝐵 → ( 𝐴 +o suc 𝑦 ) ⊆ ( 𝐵 +o suc 𝑦 ) ) ) ) |
| 15 | 14 | imbi2d | ⊢ ( 𝑥 = suc 𝑦 → ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ⊆ 𝐵 → ( 𝐴 +o 𝑥 ) ⊆ ( 𝐵 +o 𝑥 ) ) ) ↔ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ⊆ 𝐵 → ( 𝐴 +o suc 𝑦 ) ⊆ ( 𝐵 +o suc 𝑦 ) ) ) ) ) |
| 16 | oveq2 | ⊢ ( 𝑥 = 𝐶 → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o 𝐶 ) ) | |
| 17 | oveq2 | ⊢ ( 𝑥 = 𝐶 → ( 𝐵 +o 𝑥 ) = ( 𝐵 +o 𝐶 ) ) | |
| 18 | 16 17 | sseq12d | ⊢ ( 𝑥 = 𝐶 → ( ( 𝐴 +o 𝑥 ) ⊆ ( 𝐵 +o 𝑥 ) ↔ ( 𝐴 +o 𝐶 ) ⊆ ( 𝐵 +o 𝐶 ) ) ) |
| 19 | 18 | imbi2d | ⊢ ( 𝑥 = 𝐶 → ( ( 𝐴 ⊆ 𝐵 → ( 𝐴 +o 𝑥 ) ⊆ ( 𝐵 +o 𝑥 ) ) ↔ ( 𝐴 ⊆ 𝐵 → ( 𝐴 +o 𝐶 ) ⊆ ( 𝐵 +o 𝐶 ) ) ) ) |
| 20 | 19 | imbi2d | ⊢ ( 𝑥 = 𝐶 → ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ⊆ 𝐵 → ( 𝐴 +o 𝑥 ) ⊆ ( 𝐵 +o 𝑥 ) ) ) ↔ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ⊆ 𝐵 → ( 𝐴 +o 𝐶 ) ⊆ ( 𝐵 +o 𝐶 ) ) ) ) ) |
| 21 | nnon | ⊢ ( 𝐴 ∈ ω → 𝐴 ∈ On ) | |
| 22 | nnon | ⊢ ( 𝐵 ∈ ω → 𝐵 ∈ On ) | |
| 23 | oa0 | ⊢ ( 𝐴 ∈ On → ( 𝐴 +o ∅ ) = 𝐴 ) | |
| 24 | 23 | adantr | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o ∅ ) = 𝐴 ) |
| 25 | oa0 | ⊢ ( 𝐵 ∈ On → ( 𝐵 +o ∅ ) = 𝐵 ) | |
| 26 | 25 | adantl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 +o ∅ ) = 𝐵 ) |
| 27 | 24 26 | sseq12d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o ∅ ) ⊆ ( 𝐵 +o ∅ ) ↔ 𝐴 ⊆ 𝐵 ) ) |
| 28 | 27 | biimprd | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 → ( 𝐴 +o ∅ ) ⊆ ( 𝐵 +o ∅ ) ) ) |
| 29 | 21 22 28 | syl2an | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ⊆ 𝐵 → ( 𝐴 +o ∅ ) ⊆ ( 𝐵 +o ∅ ) ) ) |
| 30 | nnacl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 +o 𝑦 ) ∈ ω ) | |
| 31 | 30 | ancoms | ⊢ ( ( 𝑦 ∈ ω ∧ 𝐴 ∈ ω ) → ( 𝐴 +o 𝑦 ) ∈ ω ) |
| 32 | 31 | adantrr | ⊢ ( ( 𝑦 ∈ ω ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( 𝐴 +o 𝑦 ) ∈ ω ) |
| 33 | nnon | ⊢ ( ( 𝐴 +o 𝑦 ) ∈ ω → ( 𝐴 +o 𝑦 ) ∈ On ) | |
| 34 | eloni | ⊢ ( ( 𝐴 +o 𝑦 ) ∈ On → Ord ( 𝐴 +o 𝑦 ) ) | |
| 35 | 32 33 34 | 3syl | ⊢ ( ( 𝑦 ∈ ω ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → Ord ( 𝐴 +o 𝑦 ) ) |
| 36 | nnacl | ⊢ ( ( 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐵 +o 𝑦 ) ∈ ω ) | |
| 37 | 36 | ancoms | ⊢ ( ( 𝑦 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐵 +o 𝑦 ) ∈ ω ) |
| 38 | 37 | adantrl | ⊢ ( ( 𝑦 ∈ ω ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( 𝐵 +o 𝑦 ) ∈ ω ) |
| 39 | nnon | ⊢ ( ( 𝐵 +o 𝑦 ) ∈ ω → ( 𝐵 +o 𝑦 ) ∈ On ) | |
| 40 | eloni | ⊢ ( ( 𝐵 +o 𝑦 ) ∈ On → Ord ( 𝐵 +o 𝑦 ) ) | |
| 41 | 38 39 40 | 3syl | ⊢ ( ( 𝑦 ∈ ω ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → Ord ( 𝐵 +o 𝑦 ) ) |
| 42 | ordsucsssuc | ⊢ ( ( Ord ( 𝐴 +o 𝑦 ) ∧ Ord ( 𝐵 +o 𝑦 ) ) → ( ( 𝐴 +o 𝑦 ) ⊆ ( 𝐵 +o 𝑦 ) ↔ suc ( 𝐴 +o 𝑦 ) ⊆ suc ( 𝐵 +o 𝑦 ) ) ) | |
| 43 | 35 41 42 | syl2anc | ⊢ ( ( 𝑦 ∈ ω ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( ( 𝐴 +o 𝑦 ) ⊆ ( 𝐵 +o 𝑦 ) ↔ suc ( 𝐴 +o 𝑦 ) ⊆ suc ( 𝐵 +o 𝑦 ) ) ) |
| 44 | 43 | biimpa | ⊢ ( ( ( 𝑦 ∈ ω ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) ∧ ( 𝐴 +o 𝑦 ) ⊆ ( 𝐵 +o 𝑦 ) ) → suc ( 𝐴 +o 𝑦 ) ⊆ suc ( 𝐵 +o 𝑦 ) ) |
| 45 | nnasuc | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 +o suc 𝑦 ) = suc ( 𝐴 +o 𝑦 ) ) | |
| 46 | 45 | ancoms | ⊢ ( ( 𝑦 ∈ ω ∧ 𝐴 ∈ ω ) → ( 𝐴 +o suc 𝑦 ) = suc ( 𝐴 +o 𝑦 ) ) |
| 47 | 46 | adantrr | ⊢ ( ( 𝑦 ∈ ω ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( 𝐴 +o suc 𝑦 ) = suc ( 𝐴 +o 𝑦 ) ) |
| 48 | nnasuc | ⊢ ( ( 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐵 +o suc 𝑦 ) = suc ( 𝐵 +o 𝑦 ) ) | |
| 49 | 48 | ancoms | ⊢ ( ( 𝑦 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐵 +o suc 𝑦 ) = suc ( 𝐵 +o 𝑦 ) ) |
| 50 | 49 | adantrl | ⊢ ( ( 𝑦 ∈ ω ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( 𝐵 +o suc 𝑦 ) = suc ( 𝐵 +o 𝑦 ) ) |
| 51 | 47 50 | sseq12d | ⊢ ( ( 𝑦 ∈ ω ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( ( 𝐴 +o suc 𝑦 ) ⊆ ( 𝐵 +o suc 𝑦 ) ↔ suc ( 𝐴 +o 𝑦 ) ⊆ suc ( 𝐵 +o 𝑦 ) ) ) |
| 52 | 51 | adantr | ⊢ ( ( ( 𝑦 ∈ ω ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) ∧ ( 𝐴 +o 𝑦 ) ⊆ ( 𝐵 +o 𝑦 ) ) → ( ( 𝐴 +o suc 𝑦 ) ⊆ ( 𝐵 +o suc 𝑦 ) ↔ suc ( 𝐴 +o 𝑦 ) ⊆ suc ( 𝐵 +o 𝑦 ) ) ) |
| 53 | 44 52 | mpbird | ⊢ ( ( ( 𝑦 ∈ ω ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) ∧ ( 𝐴 +o 𝑦 ) ⊆ ( 𝐵 +o 𝑦 ) ) → ( 𝐴 +o suc 𝑦 ) ⊆ ( 𝐵 +o suc 𝑦 ) ) |
| 54 | 53 | ex | ⊢ ( ( 𝑦 ∈ ω ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( ( 𝐴 +o 𝑦 ) ⊆ ( 𝐵 +o 𝑦 ) → ( 𝐴 +o suc 𝑦 ) ⊆ ( 𝐵 +o suc 𝑦 ) ) ) |
| 55 | 54 | imim2d | ⊢ ( ( 𝑦 ∈ ω ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( ( 𝐴 ⊆ 𝐵 → ( 𝐴 +o 𝑦 ) ⊆ ( 𝐵 +o 𝑦 ) ) → ( 𝐴 ⊆ 𝐵 → ( 𝐴 +o suc 𝑦 ) ⊆ ( 𝐵 +o suc 𝑦 ) ) ) ) |
| 56 | 55 | ex | ⊢ ( 𝑦 ∈ ω → ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( 𝐴 ⊆ 𝐵 → ( 𝐴 +o 𝑦 ) ⊆ ( 𝐵 +o 𝑦 ) ) → ( 𝐴 ⊆ 𝐵 → ( 𝐴 +o suc 𝑦 ) ⊆ ( 𝐵 +o suc 𝑦 ) ) ) ) ) |
| 57 | 56 | a2d | ⊢ ( 𝑦 ∈ ω → ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ⊆ 𝐵 → ( 𝐴 +o 𝑦 ) ⊆ ( 𝐵 +o 𝑦 ) ) ) → ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ⊆ 𝐵 → ( 𝐴 +o suc 𝑦 ) ⊆ ( 𝐵 +o suc 𝑦 ) ) ) ) ) |
| 58 | 5 10 15 20 29 57 | finds | ⊢ ( 𝐶 ∈ ω → ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ⊆ 𝐵 → ( 𝐴 +o 𝐶 ) ⊆ ( 𝐵 +o 𝐶 ) ) ) ) |
| 59 | 58 | com12 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐶 ∈ ω → ( 𝐴 ⊆ 𝐵 → ( 𝐴 +o 𝐶 ) ⊆ ( 𝐵 +o 𝐶 ) ) ) ) |
| 60 | 59 | 3impia | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐴 ⊆ 𝐵 → ( 𝐴 +o 𝐶 ) ⊆ ( 𝐵 +o 𝐶 ) ) ) |