This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for omopthi . (Contributed by Scott Fenton, 16-Apr-2012) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | omopthlem2.1 | |- A e. _om |
|
| omopthlem2.2 | |- B e. _om |
||
| omopthlem2.3 | |- C e. _om |
||
| omopthlem2.4 | |- D e. _om |
||
| Assertion | omopthlem2 | |- ( ( A +o B ) e. C -> -. ( ( C .o C ) +o D ) = ( ( ( A +o B ) .o ( A +o B ) ) +o B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omopthlem2.1 | |- A e. _om |
|
| 2 | omopthlem2.2 | |- B e. _om |
|
| 3 | omopthlem2.3 | |- C e. _om |
|
| 4 | omopthlem2.4 | |- D e. _om |
|
| 5 | 3 3 | nnmcli | |- ( C .o C ) e. _om |
| 6 | 5 4 | nnacli | |- ( ( C .o C ) +o D ) e. _om |
| 7 | 6 | nnoni | |- ( ( C .o C ) +o D ) e. On |
| 8 | 7 | onirri | |- -. ( ( C .o C ) +o D ) e. ( ( C .o C ) +o D ) |
| 9 | eleq1 | |- ( ( ( C .o C ) +o D ) = ( ( ( A +o B ) .o ( A +o B ) ) +o B ) -> ( ( ( C .o C ) +o D ) e. ( ( C .o C ) +o D ) <-> ( ( ( A +o B ) .o ( A +o B ) ) +o B ) e. ( ( C .o C ) +o D ) ) ) |
|
| 10 | 8 9 | mtbii | |- ( ( ( C .o C ) +o D ) = ( ( ( A +o B ) .o ( A +o B ) ) +o B ) -> -. ( ( ( A +o B ) .o ( A +o B ) ) +o B ) e. ( ( C .o C ) +o D ) ) |
| 11 | nnaword1 | |- ( ( ( C .o C ) e. _om /\ D e. _om ) -> ( C .o C ) C_ ( ( C .o C ) +o D ) ) |
|
| 12 | 5 4 11 | mp2an | |- ( C .o C ) C_ ( ( C .o C ) +o D ) |
| 13 | 1 2 | nnacli | |- ( A +o B ) e. _om |
| 14 | 13 1 | nnacli | |- ( ( A +o B ) +o A ) e. _om |
| 15 | nnaword1 | |- ( ( B e. _om /\ ( ( A +o B ) +o A ) e. _om ) -> B C_ ( B +o ( ( A +o B ) +o A ) ) ) |
|
| 16 | 2 14 15 | mp2an | |- B C_ ( B +o ( ( A +o B ) +o A ) ) |
| 17 | nnacom | |- ( ( B e. _om /\ ( ( A +o B ) +o A ) e. _om ) -> ( B +o ( ( A +o B ) +o A ) ) = ( ( ( A +o B ) +o A ) +o B ) ) |
|
| 18 | 2 14 17 | mp2an | |- ( B +o ( ( A +o B ) +o A ) ) = ( ( ( A +o B ) +o A ) +o B ) |
| 19 | 16 18 | sseqtri | |- B C_ ( ( ( A +o B ) +o A ) +o B ) |
| 20 | nnaass | |- ( ( ( A +o B ) e. _om /\ A e. _om /\ B e. _om ) -> ( ( ( A +o B ) +o A ) +o B ) = ( ( A +o B ) +o ( A +o B ) ) ) |
|
| 21 | 13 1 2 20 | mp3an | |- ( ( ( A +o B ) +o A ) +o B ) = ( ( A +o B ) +o ( A +o B ) ) |
| 22 | nnm2 | |- ( ( A +o B ) e. _om -> ( ( A +o B ) .o 2o ) = ( ( A +o B ) +o ( A +o B ) ) ) |
|
| 23 | 13 22 | ax-mp | |- ( ( A +o B ) .o 2o ) = ( ( A +o B ) +o ( A +o B ) ) |
| 24 | 21 23 | eqtr4i | |- ( ( ( A +o B ) +o A ) +o B ) = ( ( A +o B ) .o 2o ) |
| 25 | 19 24 | sseqtri | |- B C_ ( ( A +o B ) .o 2o ) |
| 26 | 2onn | |- 2o e. _om |
|
| 27 | 13 26 | nnmcli | |- ( ( A +o B ) .o 2o ) e. _om |
| 28 | 13 13 | nnmcli | |- ( ( A +o B ) .o ( A +o B ) ) e. _om |
| 29 | nnawordi | |- ( ( B e. _om /\ ( ( A +o B ) .o 2o ) e. _om /\ ( ( A +o B ) .o ( A +o B ) ) e. _om ) -> ( B C_ ( ( A +o B ) .o 2o ) -> ( B +o ( ( A +o B ) .o ( A +o B ) ) ) C_ ( ( ( A +o B ) .o 2o ) +o ( ( A +o B ) .o ( A +o B ) ) ) ) ) |
|
| 30 | 2 27 28 29 | mp3an | |- ( B C_ ( ( A +o B ) .o 2o ) -> ( B +o ( ( A +o B ) .o ( A +o B ) ) ) C_ ( ( ( A +o B ) .o 2o ) +o ( ( A +o B ) .o ( A +o B ) ) ) ) |
| 31 | 25 30 | ax-mp | |- ( B +o ( ( A +o B ) .o ( A +o B ) ) ) C_ ( ( ( A +o B ) .o 2o ) +o ( ( A +o B ) .o ( A +o B ) ) ) |
| 32 | nnacom | |- ( ( ( ( A +o B ) .o ( A +o B ) ) e. _om /\ B e. _om ) -> ( ( ( A +o B ) .o ( A +o B ) ) +o B ) = ( B +o ( ( A +o B ) .o ( A +o B ) ) ) ) |
|
| 33 | 28 2 32 | mp2an | |- ( ( ( A +o B ) .o ( A +o B ) ) +o B ) = ( B +o ( ( A +o B ) .o ( A +o B ) ) ) |
| 34 | nnacom | |- ( ( ( ( A +o B ) .o ( A +o B ) ) e. _om /\ ( ( A +o B ) .o 2o ) e. _om ) -> ( ( ( A +o B ) .o ( A +o B ) ) +o ( ( A +o B ) .o 2o ) ) = ( ( ( A +o B ) .o 2o ) +o ( ( A +o B ) .o ( A +o B ) ) ) ) |
|
| 35 | 28 27 34 | mp2an | |- ( ( ( A +o B ) .o ( A +o B ) ) +o ( ( A +o B ) .o 2o ) ) = ( ( ( A +o B ) .o 2o ) +o ( ( A +o B ) .o ( A +o B ) ) ) |
| 36 | 31 33 35 | 3sstr4i | |- ( ( ( A +o B ) .o ( A +o B ) ) +o B ) C_ ( ( ( A +o B ) .o ( A +o B ) ) +o ( ( A +o B ) .o 2o ) ) |
| 37 | 13 3 | omopthlem1 | |- ( ( A +o B ) e. C -> ( ( ( A +o B ) .o ( A +o B ) ) +o ( ( A +o B ) .o 2o ) ) e. ( C .o C ) ) |
| 38 | 28 2 | nnacli | |- ( ( ( A +o B ) .o ( A +o B ) ) +o B ) e. _om |
| 39 | 38 | nnoni | |- ( ( ( A +o B ) .o ( A +o B ) ) +o B ) e. On |
| 40 | 5 | nnoni | |- ( C .o C ) e. On |
| 41 | ontr2 | |- ( ( ( ( ( A +o B ) .o ( A +o B ) ) +o B ) e. On /\ ( C .o C ) e. On ) -> ( ( ( ( ( A +o B ) .o ( A +o B ) ) +o B ) C_ ( ( ( A +o B ) .o ( A +o B ) ) +o ( ( A +o B ) .o 2o ) ) /\ ( ( ( A +o B ) .o ( A +o B ) ) +o ( ( A +o B ) .o 2o ) ) e. ( C .o C ) ) -> ( ( ( A +o B ) .o ( A +o B ) ) +o B ) e. ( C .o C ) ) ) |
|
| 42 | 39 40 41 | mp2an | |- ( ( ( ( ( A +o B ) .o ( A +o B ) ) +o B ) C_ ( ( ( A +o B ) .o ( A +o B ) ) +o ( ( A +o B ) .o 2o ) ) /\ ( ( ( A +o B ) .o ( A +o B ) ) +o ( ( A +o B ) .o 2o ) ) e. ( C .o C ) ) -> ( ( ( A +o B ) .o ( A +o B ) ) +o B ) e. ( C .o C ) ) |
| 43 | 36 37 42 | sylancr | |- ( ( A +o B ) e. C -> ( ( ( A +o B ) .o ( A +o B ) ) +o B ) e. ( C .o C ) ) |
| 44 | 12 43 | sselid | |- ( ( A +o B ) e. C -> ( ( ( A +o B ) .o ( A +o B ) ) +o B ) e. ( ( C .o C ) +o D ) ) |
| 45 | 10 44 | nsyl3 | |- ( ( A +o B ) e. C -> -. ( ( C .o C ) +o D ) = ( ( ( A +o B ) .o ( A +o B ) ) +o B ) ) |