This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for orthomodular law in the Hilbert lattice. (Contributed by NM, 14-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | omlsilem.1 | ⊢ 𝐺 ∈ Sℋ | |
| omlsilem.2 | ⊢ 𝐻 ∈ Sℋ | ||
| omlsilem.3 | ⊢ 𝐺 ⊆ 𝐻 | ||
| omlsilem.4 | ⊢ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) = 0ℋ | ||
| omlsilem.5 | ⊢ 𝐴 ∈ 𝐻 | ||
| omlsilem.6 | ⊢ 𝐵 ∈ 𝐺 | ||
| omlsilem.7 | ⊢ 𝐶 ∈ ( ⊥ ‘ 𝐺 ) | ||
| Assertion | omlsilem | ⊢ ( 𝐴 = ( 𝐵 +ℎ 𝐶 ) → 𝐴 ∈ 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omlsilem.1 | ⊢ 𝐺 ∈ Sℋ | |
| 2 | omlsilem.2 | ⊢ 𝐻 ∈ Sℋ | |
| 3 | omlsilem.3 | ⊢ 𝐺 ⊆ 𝐻 | |
| 4 | omlsilem.4 | ⊢ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) = 0ℋ | |
| 5 | omlsilem.5 | ⊢ 𝐴 ∈ 𝐻 | |
| 6 | omlsilem.6 | ⊢ 𝐵 ∈ 𝐺 | |
| 7 | omlsilem.7 | ⊢ 𝐶 ∈ ( ⊥ ‘ 𝐺 ) | |
| 8 | 2 5 | shelii | ⊢ 𝐴 ∈ ℋ |
| 9 | 1 6 | shelii | ⊢ 𝐵 ∈ ℋ |
| 10 | shocss | ⊢ ( 𝐺 ∈ Sℋ → ( ⊥ ‘ 𝐺 ) ⊆ ℋ ) | |
| 11 | 1 10 | ax-mp | ⊢ ( ⊥ ‘ 𝐺 ) ⊆ ℋ |
| 12 | 11 7 | sselii | ⊢ 𝐶 ∈ ℋ |
| 13 | 8 9 12 | hvsubaddi | ⊢ ( ( 𝐴 −ℎ 𝐵 ) = 𝐶 ↔ ( 𝐵 +ℎ 𝐶 ) = 𝐴 ) |
| 14 | eqcom | ⊢ ( ( 𝐵 +ℎ 𝐶 ) = 𝐴 ↔ 𝐴 = ( 𝐵 +ℎ 𝐶 ) ) | |
| 15 | 13 14 | bitri | ⊢ ( ( 𝐴 −ℎ 𝐵 ) = 𝐶 ↔ 𝐴 = ( 𝐵 +ℎ 𝐶 ) ) |
| 16 | 3 6 | sselii | ⊢ 𝐵 ∈ 𝐻 |
| 17 | shsubcl | ⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) → ( 𝐴 −ℎ 𝐵 ) ∈ 𝐻 ) | |
| 18 | 2 5 16 17 | mp3an | ⊢ ( 𝐴 −ℎ 𝐵 ) ∈ 𝐻 |
| 19 | eleq1 | ⊢ ( ( 𝐴 −ℎ 𝐵 ) = 𝐶 → ( ( 𝐴 −ℎ 𝐵 ) ∈ 𝐻 ↔ 𝐶 ∈ 𝐻 ) ) | |
| 20 | 18 19 | mpbii | ⊢ ( ( 𝐴 −ℎ 𝐵 ) = 𝐶 → 𝐶 ∈ 𝐻 ) |
| 21 | 15 20 | sylbir | ⊢ ( 𝐴 = ( 𝐵 +ℎ 𝐶 ) → 𝐶 ∈ 𝐻 ) |
| 22 | 4 | eleq2i | ⊢ ( 𝐶 ∈ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ↔ 𝐶 ∈ 0ℋ ) |
| 23 | elin | ⊢ ( 𝐶 ∈ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ↔ ( 𝐶 ∈ 𝐻 ∧ 𝐶 ∈ ( ⊥ ‘ 𝐺 ) ) ) | |
| 24 | elch0 | ⊢ ( 𝐶 ∈ 0ℋ ↔ 𝐶 = 0ℎ ) | |
| 25 | 22 23 24 | 3bitr3i | ⊢ ( ( 𝐶 ∈ 𝐻 ∧ 𝐶 ∈ ( ⊥ ‘ 𝐺 ) ) ↔ 𝐶 = 0ℎ ) |
| 26 | 21 7 25 | sylanblc | ⊢ ( 𝐴 = ( 𝐵 +ℎ 𝐶 ) → 𝐶 = 0ℎ ) |
| 27 | 26 | oveq2d | ⊢ ( 𝐴 = ( 𝐵 +ℎ 𝐶 ) → ( 𝐵 +ℎ 𝐶 ) = ( 𝐵 +ℎ 0ℎ ) ) |
| 28 | ax-hvaddid | ⊢ ( 𝐵 ∈ ℋ → ( 𝐵 +ℎ 0ℎ ) = 𝐵 ) | |
| 29 | 9 28 | ax-mp | ⊢ ( 𝐵 +ℎ 0ℎ ) = 𝐵 |
| 30 | 27 29 | eqtrdi | ⊢ ( 𝐴 = ( 𝐵 +ℎ 𝐶 ) → ( 𝐵 +ℎ 𝐶 ) = 𝐵 ) |
| 31 | 30 6 | eqeltrdi | ⊢ ( 𝐴 = ( 𝐵 +ℎ 𝐶 ) → ( 𝐵 +ℎ 𝐶 ) ∈ 𝐺 ) |
| 32 | eleq1 | ⊢ ( 𝐴 = ( 𝐵 +ℎ 𝐶 ) → ( 𝐴 ∈ 𝐺 ↔ ( 𝐵 +ℎ 𝐶 ) ∈ 𝐺 ) ) | |
| 33 | 31 32 | mpbird | ⊢ ( 𝐴 = ( 𝐵 +ℎ 𝐶 ) → 𝐴 ∈ 𝐺 ) |