This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subspace inference form of orthomodular law in the Hilbert lattice. (Contributed by NM, 14-Oct-1999) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | omlsi.1 | ⊢ 𝐴 ∈ Cℋ | |
| omlsi.2 | ⊢ 𝐵 ∈ Sℋ | ||
| omlsi.3 | ⊢ 𝐴 ⊆ 𝐵 | ||
| omlsi.4 | ⊢ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ | ||
| Assertion | omlsii | ⊢ 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omlsi.1 | ⊢ 𝐴 ∈ Cℋ | |
| 2 | omlsi.2 | ⊢ 𝐵 ∈ Sℋ | |
| 3 | omlsi.3 | ⊢ 𝐴 ⊆ 𝐵 | |
| 4 | omlsi.4 | ⊢ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ | |
| 5 | 2 | sheli | ⊢ ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ℋ ) |
| 6 | 1 5 | pjhthlem2 | ⊢ ( 𝑥 ∈ 𝐵 → ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ ( ⊥ ‘ 𝐴 ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) |
| 7 | eqeq1 | ⊢ ( 𝑥 = if ( 𝑥 ∈ 𝐵 , 𝑥 , 0ℎ ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) ↔ if ( 𝑥 ∈ 𝐵 , 𝑥 , 0ℎ ) = ( 𝑦 +ℎ 𝑧 ) ) ) | |
| 8 | eleq1 | ⊢ ( 𝑥 = if ( 𝑥 ∈ 𝐵 , 𝑥 , 0ℎ ) → ( 𝑥 ∈ 𝐴 ↔ if ( 𝑥 ∈ 𝐵 , 𝑥 , 0ℎ ) ∈ 𝐴 ) ) | |
| 9 | 7 8 | imbi12d | ⊢ ( 𝑥 = if ( 𝑥 ∈ 𝐵 , 𝑥 , 0ℎ ) → ( ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ 𝐴 ) ↔ ( if ( 𝑥 ∈ 𝐵 , 𝑥 , 0ℎ ) = ( 𝑦 +ℎ 𝑧 ) → if ( 𝑥 ∈ 𝐵 , 𝑥 , 0ℎ ) ∈ 𝐴 ) ) ) |
| 10 | oveq1 | ⊢ ( 𝑦 = if ( 𝑦 ∈ 𝐴 , 𝑦 , 0ℎ ) → ( 𝑦 +ℎ 𝑧 ) = ( if ( 𝑦 ∈ 𝐴 , 𝑦 , 0ℎ ) +ℎ 𝑧 ) ) | |
| 11 | 10 | eqeq2d | ⊢ ( 𝑦 = if ( 𝑦 ∈ 𝐴 , 𝑦 , 0ℎ ) → ( if ( 𝑥 ∈ 𝐵 , 𝑥 , 0ℎ ) = ( 𝑦 +ℎ 𝑧 ) ↔ if ( 𝑥 ∈ 𝐵 , 𝑥 , 0ℎ ) = ( if ( 𝑦 ∈ 𝐴 , 𝑦 , 0ℎ ) +ℎ 𝑧 ) ) ) |
| 12 | 11 | imbi1d | ⊢ ( 𝑦 = if ( 𝑦 ∈ 𝐴 , 𝑦 , 0ℎ ) → ( ( if ( 𝑥 ∈ 𝐵 , 𝑥 , 0ℎ ) = ( 𝑦 +ℎ 𝑧 ) → if ( 𝑥 ∈ 𝐵 , 𝑥 , 0ℎ ) ∈ 𝐴 ) ↔ ( if ( 𝑥 ∈ 𝐵 , 𝑥 , 0ℎ ) = ( if ( 𝑦 ∈ 𝐴 , 𝑦 , 0ℎ ) +ℎ 𝑧 ) → if ( 𝑥 ∈ 𝐵 , 𝑥 , 0ℎ ) ∈ 𝐴 ) ) ) |
| 13 | oveq2 | ⊢ ( 𝑧 = if ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) , 𝑧 , 0ℎ ) → ( if ( 𝑦 ∈ 𝐴 , 𝑦 , 0ℎ ) +ℎ 𝑧 ) = ( if ( 𝑦 ∈ 𝐴 , 𝑦 , 0ℎ ) +ℎ if ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) , 𝑧 , 0ℎ ) ) ) | |
| 14 | 13 | eqeq2d | ⊢ ( 𝑧 = if ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) , 𝑧 , 0ℎ ) → ( if ( 𝑥 ∈ 𝐵 , 𝑥 , 0ℎ ) = ( if ( 𝑦 ∈ 𝐴 , 𝑦 , 0ℎ ) +ℎ 𝑧 ) ↔ if ( 𝑥 ∈ 𝐵 , 𝑥 , 0ℎ ) = ( if ( 𝑦 ∈ 𝐴 , 𝑦 , 0ℎ ) +ℎ if ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) , 𝑧 , 0ℎ ) ) ) ) |
| 15 | 14 | imbi1d | ⊢ ( 𝑧 = if ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) , 𝑧 , 0ℎ ) → ( ( if ( 𝑥 ∈ 𝐵 , 𝑥 , 0ℎ ) = ( if ( 𝑦 ∈ 𝐴 , 𝑦 , 0ℎ ) +ℎ 𝑧 ) → if ( 𝑥 ∈ 𝐵 , 𝑥 , 0ℎ ) ∈ 𝐴 ) ↔ ( if ( 𝑥 ∈ 𝐵 , 𝑥 , 0ℎ ) = ( if ( 𝑦 ∈ 𝐴 , 𝑦 , 0ℎ ) +ℎ if ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) , 𝑧 , 0ℎ ) ) → if ( 𝑥 ∈ 𝐵 , 𝑥 , 0ℎ ) ∈ 𝐴 ) ) ) |
| 16 | 1 | chshii | ⊢ 𝐴 ∈ Sℋ |
| 17 | sh0 | ⊢ ( 𝐵 ∈ Sℋ → 0ℎ ∈ 𝐵 ) | |
| 18 | 2 17 | ax-mp | ⊢ 0ℎ ∈ 𝐵 |
| 19 | 18 | elimel | ⊢ if ( 𝑥 ∈ 𝐵 , 𝑥 , 0ℎ ) ∈ 𝐵 |
| 20 | ch0 | ⊢ ( 𝐴 ∈ Cℋ → 0ℎ ∈ 𝐴 ) | |
| 21 | 1 20 | ax-mp | ⊢ 0ℎ ∈ 𝐴 |
| 22 | 21 | elimel | ⊢ if ( 𝑦 ∈ 𝐴 , 𝑦 , 0ℎ ) ∈ 𝐴 |
| 23 | shocsh | ⊢ ( 𝐴 ∈ Sℋ → ( ⊥ ‘ 𝐴 ) ∈ Sℋ ) | |
| 24 | 16 23 | ax-mp | ⊢ ( ⊥ ‘ 𝐴 ) ∈ Sℋ |
| 25 | sh0 | ⊢ ( ( ⊥ ‘ 𝐴 ) ∈ Sℋ → 0ℎ ∈ ( ⊥ ‘ 𝐴 ) ) | |
| 26 | 24 25 | ax-mp | ⊢ 0ℎ ∈ ( ⊥ ‘ 𝐴 ) |
| 27 | 26 | elimel | ⊢ if ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) , 𝑧 , 0ℎ ) ∈ ( ⊥ ‘ 𝐴 ) |
| 28 | 16 2 3 4 19 22 27 | omlsilem | ⊢ ( if ( 𝑥 ∈ 𝐵 , 𝑥 , 0ℎ ) = ( if ( 𝑦 ∈ 𝐴 , 𝑦 , 0ℎ ) +ℎ if ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) , 𝑧 , 0ℎ ) ) → if ( 𝑥 ∈ 𝐵 , 𝑥 , 0ℎ ) ∈ 𝐴 ) |
| 29 | 9 12 15 28 | dedth3h | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ 𝐴 ) ) |
| 30 | 29 | 3expia | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ 𝐴 ) ) ) |
| 31 | 30 | rexlimdv | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) → ( ∃ 𝑧 ∈ ( ⊥ ‘ 𝐴 ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ 𝐴 ) ) |
| 32 | 31 | rexlimdva | ⊢ ( 𝑥 ∈ 𝐵 → ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ ( ⊥ ‘ 𝐴 ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ 𝐴 ) ) |
| 33 | 6 32 | mpd | ⊢ ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴 ) |
| 34 | 33 | ssriv | ⊢ 𝐵 ⊆ 𝐴 |
| 35 | 3 34 | eqssi | ⊢ 𝐴 = 𝐵 |