This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for orthomodular law in the Hilbert lattice. (Contributed by NM, 14-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | omlsilem.1 | ||
| omlsilem.2 | |||
| omlsilem.3 | |||
| omlsilem.4 | |||
| omlsilem.5 | |||
| omlsilem.6 | |||
| omlsilem.7 | |||
| Assertion | omlsilem |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omlsilem.1 | ||
| 2 | omlsilem.2 | ||
| 3 | omlsilem.3 | ||
| 4 | omlsilem.4 | ||
| 5 | omlsilem.5 | ||
| 6 | omlsilem.6 | ||
| 7 | omlsilem.7 | ||
| 8 | 2 5 | shelii | |
| 9 | 1 6 | shelii | |
| 10 | shocss | ||
| 11 | 1 10 | ax-mp | |
| 12 | 11 7 | sselii | |
| 13 | 8 9 12 | hvsubaddi | |
| 14 | eqcom | ||
| 15 | 13 14 | bitri | |
| 16 | 3 6 | sselii | |
| 17 | shsubcl | ||
| 18 | 2 5 16 17 | mp3an | |
| 19 | eleq1 | ||
| 20 | 18 19 | mpbii | |
| 21 | 15 20 | sylbir | |
| 22 | 4 | eleq2i | |
| 23 | elin | ||
| 24 | elch0 | ||
| 25 | 22 23 24 | 3bitr3i | |
| 26 | 21 7 25 | sylanblc | |
| 27 | 26 | oveq2d | |
| 28 | ax-hvaddid | ||
| 29 | 9 28 | ax-mp | |
| 30 | 27 29 | eqtrdi | |
| 31 | 30 6 | eqeltrdi | |
| 32 | eleq1 | ||
| 33 | 31 32 | mpbird |