This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for orthomodular law in the Hilbert lattice. (Contributed by NM, 14-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | omlsilem.1 | |- G e. SH |
|
| omlsilem.2 | |- H e. SH |
||
| omlsilem.3 | |- G C_ H |
||
| omlsilem.4 | |- ( H i^i ( _|_ ` G ) ) = 0H |
||
| omlsilem.5 | |- A e. H |
||
| omlsilem.6 | |- B e. G |
||
| omlsilem.7 | |- C e. ( _|_ ` G ) |
||
| Assertion | omlsilem | |- ( A = ( B +h C ) -> A e. G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omlsilem.1 | |- G e. SH |
|
| 2 | omlsilem.2 | |- H e. SH |
|
| 3 | omlsilem.3 | |- G C_ H |
|
| 4 | omlsilem.4 | |- ( H i^i ( _|_ ` G ) ) = 0H |
|
| 5 | omlsilem.5 | |- A e. H |
|
| 6 | omlsilem.6 | |- B e. G |
|
| 7 | omlsilem.7 | |- C e. ( _|_ ` G ) |
|
| 8 | 2 5 | shelii | |- A e. ~H |
| 9 | 1 6 | shelii | |- B e. ~H |
| 10 | shocss | |- ( G e. SH -> ( _|_ ` G ) C_ ~H ) |
|
| 11 | 1 10 | ax-mp | |- ( _|_ ` G ) C_ ~H |
| 12 | 11 7 | sselii | |- C e. ~H |
| 13 | 8 9 12 | hvsubaddi | |- ( ( A -h B ) = C <-> ( B +h C ) = A ) |
| 14 | eqcom | |- ( ( B +h C ) = A <-> A = ( B +h C ) ) |
|
| 15 | 13 14 | bitri | |- ( ( A -h B ) = C <-> A = ( B +h C ) ) |
| 16 | 3 6 | sselii | |- B e. H |
| 17 | shsubcl | |- ( ( H e. SH /\ A e. H /\ B e. H ) -> ( A -h B ) e. H ) |
|
| 18 | 2 5 16 17 | mp3an | |- ( A -h B ) e. H |
| 19 | eleq1 | |- ( ( A -h B ) = C -> ( ( A -h B ) e. H <-> C e. H ) ) |
|
| 20 | 18 19 | mpbii | |- ( ( A -h B ) = C -> C e. H ) |
| 21 | 15 20 | sylbir | |- ( A = ( B +h C ) -> C e. H ) |
| 22 | 4 | eleq2i | |- ( C e. ( H i^i ( _|_ ` G ) ) <-> C e. 0H ) |
| 23 | elin | |- ( C e. ( H i^i ( _|_ ` G ) ) <-> ( C e. H /\ C e. ( _|_ ` G ) ) ) |
|
| 24 | elch0 | |- ( C e. 0H <-> C = 0h ) |
|
| 25 | 22 23 24 | 3bitr3i | |- ( ( C e. H /\ C e. ( _|_ ` G ) ) <-> C = 0h ) |
| 26 | 21 7 25 | sylanblc | |- ( A = ( B +h C ) -> C = 0h ) |
| 27 | 26 | oveq2d | |- ( A = ( B +h C ) -> ( B +h C ) = ( B +h 0h ) ) |
| 28 | ax-hvaddid | |- ( B e. ~H -> ( B +h 0h ) = B ) |
|
| 29 | 9 28 | ax-mp | |- ( B +h 0h ) = B |
| 30 | 27 29 | eqtrdi | |- ( A = ( B +h C ) -> ( B +h C ) = B ) |
| 31 | 30 6 | eqeltrdi | |- ( A = ( B +h C ) -> ( B +h C ) e. G ) |
| 32 | eleq1 | |- ( A = ( B +h C ) -> ( A e. G <-> ( B +h C ) e. G ) ) |
|
| 33 | 31 32 | mpbird | |- ( A = ( B +h C ) -> A e. G ) |