This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relationship between vector subtraction and addition. (Contributed by NM, 11-Sep-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hvnegdi.1 | ⊢ 𝐴 ∈ ℋ | |
| hvnegdi.2 | ⊢ 𝐵 ∈ ℋ | ||
| hvaddcan.3 | ⊢ 𝐶 ∈ ℋ | ||
| Assertion | hvsubaddi | ⊢ ( ( 𝐴 −ℎ 𝐵 ) = 𝐶 ↔ ( 𝐵 +ℎ 𝐶 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvnegdi.1 | ⊢ 𝐴 ∈ ℋ | |
| 2 | hvnegdi.2 | ⊢ 𝐵 ∈ ℋ | |
| 3 | hvaddcan.3 | ⊢ 𝐶 ∈ ℋ | |
| 4 | 1 2 | hvsubvali | ⊢ ( 𝐴 −ℎ 𝐵 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) |
| 5 | 4 | eqeq1i | ⊢ ( ( 𝐴 −ℎ 𝐵 ) = 𝐶 ↔ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) = 𝐶 ) |
| 6 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 7 | 6 2 | hvmulcli | ⊢ ( - 1 ·ℎ 𝐵 ) ∈ ℋ |
| 8 | 2 1 7 | hvadd12i | ⊢ ( 𝐵 +ℎ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) = ( 𝐴 +ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) |
| 9 | 2 | hvnegidi | ⊢ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐵 ) ) = 0ℎ |
| 10 | 9 | oveq2i | ⊢ ( 𝐴 +ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) = ( 𝐴 +ℎ 0ℎ ) |
| 11 | ax-hvaddid | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 +ℎ 0ℎ ) = 𝐴 ) | |
| 12 | 1 11 | ax-mp | ⊢ ( 𝐴 +ℎ 0ℎ ) = 𝐴 |
| 13 | 8 10 12 | 3eqtri | ⊢ ( 𝐵 +ℎ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) = 𝐴 |
| 14 | 13 | eqeq1i | ⊢ ( ( 𝐵 +ℎ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) = ( 𝐵 +ℎ 𝐶 ) ↔ 𝐴 = ( 𝐵 +ℎ 𝐶 ) ) |
| 15 | 1 7 | hvaddcli | ⊢ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ∈ ℋ |
| 16 | 2 15 3 | hvaddcani | ⊢ ( ( 𝐵 +ℎ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) = ( 𝐵 +ℎ 𝐶 ) ↔ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) = 𝐶 ) |
| 17 | eqcom | ⊢ ( 𝐴 = ( 𝐵 +ℎ 𝐶 ) ↔ ( 𝐵 +ℎ 𝐶 ) = 𝐴 ) | |
| 18 | 14 16 17 | 3bitr3i | ⊢ ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) = 𝐶 ↔ ( 𝐵 +ℎ 𝐶 ) = 𝐴 ) |
| 19 | 5 18 | bitri | ⊢ ( ( 𝐴 −ℎ 𝐵 ) = 𝐶 ↔ ( 𝐵 +ℎ 𝐶 ) = 𝐴 ) |