This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subspace form of orthomodular law in the Hilbert lattice. Compare the orthomodular law in Theorem 2(ii) of Kalmbach p. 22. (Contributed by NM, 14-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | omls.1 | ⊢ 𝐴 ∈ Cℋ | |
| omls.2 | ⊢ 𝐵 ∈ Sℋ | ||
| Assertion | omlsi | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) → 𝐴 = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omls.1 | ⊢ 𝐴 ∈ Cℋ | |
| 2 | omls.2 | ⊢ 𝐵 ∈ Sℋ | |
| 3 | eqeq1 | ⊢ ( 𝐴 = if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) → ( 𝐴 = 𝐵 ↔ if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) = 𝐵 ) ) | |
| 4 | eqeq2 | ⊢ ( 𝐵 = if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐵 , 0ℋ ) → ( if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) = 𝐵 ↔ if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) = if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐵 , 0ℋ ) ) ) | |
| 5 | h0elch | ⊢ 0ℋ ∈ Cℋ | |
| 6 | 1 5 | ifcli | ⊢ if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) ∈ Cℋ |
| 7 | h0elsh | ⊢ 0ℋ ∈ Sℋ | |
| 8 | 2 7 | ifcli | ⊢ if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐵 , 0ℋ ) ∈ Sℋ |
| 9 | sseq1 | ⊢ ( 𝐴 = if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) → ( 𝐴 ⊆ 𝐵 ↔ if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) ⊆ 𝐵 ) ) | |
| 10 | fveq2 | ⊢ ( 𝐴 = if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) → ( ⊥ ‘ 𝐴 ) = ( ⊥ ‘ if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) ) ) | |
| 11 | 10 | ineq2d | ⊢ ( 𝐴 = if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) → ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = ( 𝐵 ∩ ( ⊥ ‘ if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) ) ) ) |
| 12 | 11 | eqeq1d | ⊢ ( 𝐴 = if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) → ( ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ↔ ( 𝐵 ∩ ( ⊥ ‘ if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) ) ) = 0ℋ ) ) |
| 13 | 9 12 | anbi12d | ⊢ ( 𝐴 = if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) → ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) ↔ ( if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) ) ) = 0ℋ ) ) ) |
| 14 | sseq2 | ⊢ ( 𝐵 = if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐵 , 0ℋ ) → ( if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) ⊆ 𝐵 ↔ if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) ⊆ if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐵 , 0ℋ ) ) ) | |
| 15 | ineq1 | ⊢ ( 𝐵 = if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐵 , 0ℋ ) → ( 𝐵 ∩ ( ⊥ ‘ if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) ) ) = ( if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐵 , 0ℋ ) ∩ ( ⊥ ‘ if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) ) ) ) | |
| 16 | 15 | eqeq1d | ⊢ ( 𝐵 = if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐵 , 0ℋ ) → ( ( 𝐵 ∩ ( ⊥ ‘ if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) ) ) = 0ℋ ↔ ( if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐵 , 0ℋ ) ∩ ( ⊥ ‘ if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) ) ) = 0ℋ ) ) |
| 17 | 14 16 | anbi12d | ⊢ ( 𝐵 = if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐵 , 0ℋ ) → ( ( if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) ) ) = 0ℋ ) ↔ ( if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) ⊆ if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐵 , 0ℋ ) ∧ ( if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐵 , 0ℋ ) ∩ ( ⊥ ‘ if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) ) ) = 0ℋ ) ) ) |
| 18 | sseq1 | ⊢ ( 0ℋ = if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) → ( 0ℋ ⊆ 0ℋ ↔ if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) ⊆ 0ℋ ) ) | |
| 19 | fveq2 | ⊢ ( 0ℋ = if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) → ( ⊥ ‘ 0ℋ ) = ( ⊥ ‘ if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) ) ) | |
| 20 | 19 | ineq2d | ⊢ ( 0ℋ = if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) → ( 0ℋ ∩ ( ⊥ ‘ 0ℋ ) ) = ( 0ℋ ∩ ( ⊥ ‘ if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) ) ) ) |
| 21 | 20 | eqeq1d | ⊢ ( 0ℋ = if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) → ( ( 0ℋ ∩ ( ⊥ ‘ 0ℋ ) ) = 0ℋ ↔ ( 0ℋ ∩ ( ⊥ ‘ if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) ) ) = 0ℋ ) ) |
| 22 | 18 21 | anbi12d | ⊢ ( 0ℋ = if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) → ( ( 0ℋ ⊆ 0ℋ ∧ ( 0ℋ ∩ ( ⊥ ‘ 0ℋ ) ) = 0ℋ ) ↔ ( if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) ⊆ 0ℋ ∧ ( 0ℋ ∩ ( ⊥ ‘ if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) ) ) = 0ℋ ) ) ) |
| 23 | sseq2 | ⊢ ( 0ℋ = if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐵 , 0ℋ ) → ( if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) ⊆ 0ℋ ↔ if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) ⊆ if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐵 , 0ℋ ) ) ) | |
| 24 | ineq1 | ⊢ ( 0ℋ = if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐵 , 0ℋ ) → ( 0ℋ ∩ ( ⊥ ‘ if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) ) ) = ( if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐵 , 0ℋ ) ∩ ( ⊥ ‘ if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) ) ) ) | |
| 25 | 24 | eqeq1d | ⊢ ( 0ℋ = if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐵 , 0ℋ ) → ( ( 0ℋ ∩ ( ⊥ ‘ if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) ) ) = 0ℋ ↔ ( if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐵 , 0ℋ ) ∩ ( ⊥ ‘ if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) ) ) = 0ℋ ) ) |
| 26 | 23 25 | anbi12d | ⊢ ( 0ℋ = if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐵 , 0ℋ ) → ( ( if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) ⊆ 0ℋ ∧ ( 0ℋ ∩ ( ⊥ ‘ if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) ) ) = 0ℋ ) ↔ ( if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) ⊆ if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐵 , 0ℋ ) ∧ ( if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐵 , 0ℋ ) ∩ ( ⊥ ‘ if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) ) ) = 0ℋ ) ) ) |
| 27 | ssid | ⊢ 0ℋ ⊆ 0ℋ | |
| 28 | ocin | ⊢ ( 0ℋ ∈ Sℋ → ( 0ℋ ∩ ( ⊥ ‘ 0ℋ ) ) = 0ℋ ) | |
| 29 | 7 28 | ax-mp | ⊢ ( 0ℋ ∩ ( ⊥ ‘ 0ℋ ) ) = 0ℋ |
| 30 | 27 29 | pm3.2i | ⊢ ( 0ℋ ⊆ 0ℋ ∧ ( 0ℋ ∩ ( ⊥ ‘ 0ℋ ) ) = 0ℋ ) |
| 31 | 13 17 22 26 30 | elimhyp2v | ⊢ ( if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) ⊆ if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐵 , 0ℋ ) ∧ ( if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐵 , 0ℋ ) ∩ ( ⊥ ‘ if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) ) ) = 0ℋ ) |
| 32 | 31 | simpli | ⊢ if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) ⊆ if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐵 , 0ℋ ) |
| 33 | 31 | simpri | ⊢ ( if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐵 , 0ℋ ) ∩ ( ⊥ ‘ if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) ) ) = 0ℋ |
| 34 | 6 8 32 33 | omlsii | ⊢ if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐴 , 0ℋ ) = if ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) , 𝐵 , 0ℋ ) |
| 35 | 3 4 34 | dedth2v | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) → 𝐴 = 𝐵 ) |