This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Eliminate a hypothesis containing 2 class variables. (Contributed by NM, 14-Aug-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elimhyp2v.1 | ⊢ ( 𝐴 = if ( 𝜑 , 𝐴 , 𝐶 ) → ( 𝜑 ↔ 𝜒 ) ) | |
| elimhyp2v.2 | ⊢ ( 𝐵 = if ( 𝜑 , 𝐵 , 𝐷 ) → ( 𝜒 ↔ 𝜃 ) ) | ||
| elimhyp2v.3 | ⊢ ( 𝐶 = if ( 𝜑 , 𝐴 , 𝐶 ) → ( 𝜏 ↔ 𝜂 ) ) | ||
| elimhyp2v.4 | ⊢ ( 𝐷 = if ( 𝜑 , 𝐵 , 𝐷 ) → ( 𝜂 ↔ 𝜃 ) ) | ||
| elimhyp2v.5 | ⊢ 𝜏 | ||
| Assertion | elimhyp2v | ⊢ 𝜃 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elimhyp2v.1 | ⊢ ( 𝐴 = if ( 𝜑 , 𝐴 , 𝐶 ) → ( 𝜑 ↔ 𝜒 ) ) | |
| 2 | elimhyp2v.2 | ⊢ ( 𝐵 = if ( 𝜑 , 𝐵 , 𝐷 ) → ( 𝜒 ↔ 𝜃 ) ) | |
| 3 | elimhyp2v.3 | ⊢ ( 𝐶 = if ( 𝜑 , 𝐴 , 𝐶 ) → ( 𝜏 ↔ 𝜂 ) ) | |
| 4 | elimhyp2v.4 | ⊢ ( 𝐷 = if ( 𝜑 , 𝐵 , 𝐷 ) → ( 𝜂 ↔ 𝜃 ) ) | |
| 5 | elimhyp2v.5 | ⊢ 𝜏 | |
| 6 | iftrue | ⊢ ( 𝜑 → if ( 𝜑 , 𝐴 , 𝐶 ) = 𝐴 ) | |
| 7 | 6 | eqcomd | ⊢ ( 𝜑 → 𝐴 = if ( 𝜑 , 𝐴 , 𝐶 ) ) |
| 8 | 7 1 | syl | ⊢ ( 𝜑 → ( 𝜑 ↔ 𝜒 ) ) |
| 9 | iftrue | ⊢ ( 𝜑 → if ( 𝜑 , 𝐵 , 𝐷 ) = 𝐵 ) | |
| 10 | 9 | eqcomd | ⊢ ( 𝜑 → 𝐵 = if ( 𝜑 , 𝐵 , 𝐷 ) ) |
| 11 | 10 2 | syl | ⊢ ( 𝜑 → ( 𝜒 ↔ 𝜃 ) ) |
| 12 | 8 11 | bitrd | ⊢ ( 𝜑 → ( 𝜑 ↔ 𝜃 ) ) |
| 13 | 12 | ibi | ⊢ ( 𝜑 → 𝜃 ) |
| 14 | iffalse | ⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐴 , 𝐶 ) = 𝐶 ) | |
| 15 | 14 | eqcomd | ⊢ ( ¬ 𝜑 → 𝐶 = if ( 𝜑 , 𝐴 , 𝐶 ) ) |
| 16 | 15 3 | syl | ⊢ ( ¬ 𝜑 → ( 𝜏 ↔ 𝜂 ) ) |
| 17 | iffalse | ⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐵 , 𝐷 ) = 𝐷 ) | |
| 18 | 17 | eqcomd | ⊢ ( ¬ 𝜑 → 𝐷 = if ( 𝜑 , 𝐵 , 𝐷 ) ) |
| 19 | 18 4 | syl | ⊢ ( ¬ 𝜑 → ( 𝜂 ↔ 𝜃 ) ) |
| 20 | 16 19 | bitrd | ⊢ ( ¬ 𝜑 → ( 𝜏 ↔ 𝜃 ) ) |
| 21 | 5 20 | mpbii | ⊢ ( ¬ 𝜑 → 𝜃 ) |
| 22 | 13 21 | pm2.61i | ⊢ 𝜃 |