This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subspace form of orthomodular law in the Hilbert lattice. Compare the orthomodular law in Theorem 2(ii) of Kalmbach p. 22. (Contributed by NM, 14-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | omls.1 | |- A e. CH |
|
| omls.2 | |- B e. SH |
||
| Assertion | omlsi | |- ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) -> A = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omls.1 | |- A e. CH |
|
| 2 | omls.2 | |- B e. SH |
|
| 3 | eqeq1 | |- ( A = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) -> ( A = B <-> if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) = B ) ) |
|
| 4 | eqeq2 | |- ( B = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) -> ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) = B <-> if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) ) ) |
|
| 5 | h0elch | |- 0H e. CH |
|
| 6 | 1 5 | ifcli | |- if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) e. CH |
| 7 | h0elsh | |- 0H e. SH |
|
| 8 | 2 7 | ifcli | |- if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) e. SH |
| 9 | sseq1 | |- ( A = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) -> ( A C_ B <-> if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) C_ B ) ) |
|
| 10 | fveq2 | |- ( A = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) -> ( _|_ ` A ) = ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) |
|
| 11 | 10 | ineq2d | |- ( A = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) -> ( B i^i ( _|_ ` A ) ) = ( B i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) ) |
| 12 | 11 | eqeq1d | |- ( A = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) -> ( ( B i^i ( _|_ ` A ) ) = 0H <-> ( B i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = 0H ) ) |
| 13 | 9 12 | anbi12d | |- ( A = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) -> ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) <-> ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) C_ B /\ ( B i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = 0H ) ) ) |
| 14 | sseq2 | |- ( B = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) -> ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) C_ B <-> if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) C_ if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) ) ) |
|
| 15 | ineq1 | |- ( B = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) -> ( B i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) ) |
|
| 16 | 15 | eqeq1d | |- ( B = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) -> ( ( B i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = 0H <-> ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = 0H ) ) |
| 17 | 14 16 | anbi12d | |- ( B = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) -> ( ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) C_ B /\ ( B i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = 0H ) <-> ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) C_ if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) /\ ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = 0H ) ) ) |
| 18 | sseq1 | |- ( 0H = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) -> ( 0H C_ 0H <-> if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) C_ 0H ) ) |
|
| 19 | fveq2 | |- ( 0H = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) -> ( _|_ ` 0H ) = ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) |
|
| 20 | 19 | ineq2d | |- ( 0H = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) -> ( 0H i^i ( _|_ ` 0H ) ) = ( 0H i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) ) |
| 21 | 20 | eqeq1d | |- ( 0H = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) -> ( ( 0H i^i ( _|_ ` 0H ) ) = 0H <-> ( 0H i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = 0H ) ) |
| 22 | 18 21 | anbi12d | |- ( 0H = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) -> ( ( 0H C_ 0H /\ ( 0H i^i ( _|_ ` 0H ) ) = 0H ) <-> ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) C_ 0H /\ ( 0H i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = 0H ) ) ) |
| 23 | sseq2 | |- ( 0H = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) -> ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) C_ 0H <-> if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) C_ if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) ) ) |
|
| 24 | ineq1 | |- ( 0H = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) -> ( 0H i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) ) |
|
| 25 | 24 | eqeq1d | |- ( 0H = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) -> ( ( 0H i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = 0H <-> ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = 0H ) ) |
| 26 | 23 25 | anbi12d | |- ( 0H = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) -> ( ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) C_ 0H /\ ( 0H i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = 0H ) <-> ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) C_ if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) /\ ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = 0H ) ) ) |
| 27 | ssid | |- 0H C_ 0H |
|
| 28 | ocin | |- ( 0H e. SH -> ( 0H i^i ( _|_ ` 0H ) ) = 0H ) |
|
| 29 | 7 28 | ax-mp | |- ( 0H i^i ( _|_ ` 0H ) ) = 0H |
| 30 | 27 29 | pm3.2i | |- ( 0H C_ 0H /\ ( 0H i^i ( _|_ ` 0H ) ) = 0H ) |
| 31 | 13 17 22 26 30 | elimhyp2v | |- ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) C_ if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) /\ ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = 0H ) |
| 32 | 31 | simpli | |- if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) C_ if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) |
| 33 | 31 | simpri | |- ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = 0H |
| 34 | 6 8 32 33 | omlsii | |- if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) |
| 35 | 3 4 34 | dedth2v | |- ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) -> A = B ) |