This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Orthomodular law equivalent. Remark in Holland95 p. 223. (Contributed by NM, 19-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | omllaw4.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| omllaw4.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| omllaw4.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| omllaw4.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | ||
| Assertion | omllaw4 | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 → ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) ∧ 𝑌 ) = 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omllaw4.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | omllaw4.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | omllaw4.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 4 | omllaw4.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | |
| 5 | simp1 | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ OML ) | |
| 6 | omlop | ⊢ ( 𝐾 ∈ OML → 𝐾 ∈ OP ) | |
| 7 | 6 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ OP ) |
| 8 | simp3 | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) | |
| 9 | 1 4 | opoccl | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) |
| 10 | 7 8 9 | syl2anc | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) |
| 11 | simp2 | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 12 | 1 4 | opoccl | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) |
| 13 | 7 11 12 | syl2anc | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) |
| 14 | eqid | ⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) | |
| 15 | 1 2 14 3 4 | omllaw | ⊢ ( ( 𝐾 ∈ OML ∧ ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ∧ ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑌 ) ≤ ( ⊥ ‘ 𝑋 ) → ( ⊥ ‘ 𝑋 ) = ( ( ⊥ ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) ) ) ) |
| 16 | 5 10 13 15 | syl3anc | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑌 ) ≤ ( ⊥ ‘ 𝑋 ) → ( ⊥ ‘ 𝑋 ) = ( ( ⊥ ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) ) ) ) |
| 17 | 1 2 4 | oplecon3b | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 ↔ ( ⊥ ‘ 𝑌 ) ≤ ( ⊥ ‘ 𝑋 ) ) ) |
| 18 | 6 17 | syl3an1 | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 ↔ ( ⊥ ‘ 𝑌 ) ≤ ( ⊥ ‘ 𝑋 ) ) ) |
| 19 | omllat | ⊢ ( 𝐾 ∈ OML → 𝐾 ∈ Lat ) | |
| 20 | 19 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ Lat ) |
| 21 | 1 3 | latmcl | ⊢ ( ( 𝐾 ∈ Lat ∧ ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ∈ 𝐵 ) |
| 22 | 20 13 8 21 | syl3anc | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ∈ 𝐵 ) |
| 23 | 1 4 | opoccl | ⊢ ( ( 𝐾 ∈ OP ∧ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ∈ 𝐵 ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) ∈ 𝐵 ) |
| 24 | 7 22 23 | syl2anc | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) ∈ 𝐵 ) |
| 25 | 1 3 | latmcl | ⊢ ( ( 𝐾 ∈ Lat ∧ ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) ∧ 𝑌 ) ∈ 𝐵 ) |
| 26 | 20 24 8 25 | syl3anc | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) ∧ 𝑌 ) ∈ 𝐵 ) |
| 27 | 1 4 | opcon3b | ⊢ ( ( 𝐾 ∈ OP ∧ ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) ∧ 𝑌 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) ∧ 𝑌 ) = 𝑋 ↔ ( ⊥ ‘ 𝑋 ) = ( ⊥ ‘ ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) ∧ 𝑌 ) ) ) ) |
| 28 | 7 26 11 27 | syl3anc | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) ∧ 𝑌 ) = 𝑋 ↔ ( ⊥ ‘ 𝑋 ) = ( ⊥ ‘ ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) ∧ 𝑌 ) ) ) ) |
| 29 | 1 14 | latjcom | ⊢ ( ( 𝐾 ∈ Lat ∧ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ∈ 𝐵 ∧ ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) → ( ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ( join ‘ 𝐾 ) ( ⊥ ‘ 𝑌 ) ) = ( ( ⊥ ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) ) |
| 30 | 20 22 10 29 | syl3anc | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ( join ‘ 𝐾 ) ( ⊥ ‘ 𝑌 ) ) = ( ( ⊥ ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) ) |
| 31 | omlol | ⊢ ( 𝐾 ∈ OML → 𝐾 ∈ OL ) | |
| 32 | 31 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ OL ) |
| 33 | 1 14 3 4 | oldmm2 | ⊢ ( ( 𝐾 ∈ OL ∧ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) ∧ 𝑌 ) ) = ( ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ( join ‘ 𝐾 ) ( ⊥ ‘ 𝑌 ) ) ) |
| 34 | 32 22 8 33 | syl3anc | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) ∧ 𝑌 ) ) = ( ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ( join ‘ 𝐾 ) ( ⊥ ‘ 𝑌 ) ) ) |
| 35 | 1 4 | opococ | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) = 𝑌 ) |
| 36 | 7 8 35 | syl2anc | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) = 𝑌 ) |
| 37 | 36 | oveq2d | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) = ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) |
| 38 | 37 | oveq2d | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) ) = ( ( ⊥ ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) ) |
| 39 | 30 34 38 | 3eqtr4d | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) ∧ 𝑌 ) ) = ( ( ⊥ ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) ) ) |
| 40 | 39 | eqeq2d | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑋 ) = ( ⊥ ‘ ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) ∧ 𝑌 ) ) ↔ ( ⊥ ‘ 𝑋 ) = ( ( ⊥ ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) ) ) ) |
| 41 | 28 40 | bitrd | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) ∧ 𝑌 ) = 𝑋 ↔ ( ⊥ ‘ 𝑋 ) = ( ( ⊥ ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) ) ) ) |
| 42 | 16 18 41 | 3imtr4d | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 → ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) ∧ 𝑌 ) = 𝑋 ) ) |