This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The orthomodular law. Remark in Kalmbach p. 22. ( pjoml5 analog.) (Contributed by NM, 14-Nov-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | omllaw5.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| omllaw5.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| omllaw5.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| omllaw5.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | ||
| Assertion | omllaw5N | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∨ ( ( ⊥ ‘ 𝑋 ) ∧ ( 𝑋 ∨ 𝑌 ) ) ) = ( 𝑋 ∨ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omllaw5.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | omllaw5.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | omllaw5.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 4 | omllaw5.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | |
| 5 | simp1 | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ OML ) | |
| 6 | simp2 | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 7 | omllat | ⊢ ( 𝐾 ∈ OML → 𝐾 ∈ Lat ) | |
| 8 | 1 2 | latjcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) |
| 9 | 7 8 | syl3an1 | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) |
| 10 | 5 6 9 | 3jca | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) ) |
| 11 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 12 | 1 11 2 | latlej1 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ) |
| 13 | 7 12 | syl3an1 | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ) |
| 14 | 1 11 2 3 4 | omllaw2N | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) → ( 𝑋 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) → ( 𝑋 ∨ ( ( ⊥ ‘ 𝑋 ) ∧ ( 𝑋 ∨ 𝑌 ) ) ) = ( 𝑋 ∨ 𝑌 ) ) ) |
| 15 | 10 13 14 | sylc | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∨ ( ( ⊥ ‘ 𝑋 ) ∧ ( 𝑋 ∨ 𝑌 ) ) ) = ( 𝑋 ∨ 𝑌 ) ) |