This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Contraposition law for orthoposets. ( chcon3i analog.) (Contributed by NM, 8-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opoccl.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| opoccl.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | ||
| Assertion | opcon3b | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 = 𝑌 ↔ ( ⊥ ‘ 𝑌 ) = ( ⊥ ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opoccl.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | opoccl.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | |
| 3 | fveq2 | ⊢ ( 𝑌 = 𝑋 → ( ⊥ ‘ 𝑌 ) = ( ⊥ ‘ 𝑋 ) ) | |
| 4 | 3 | eqcoms | ⊢ ( 𝑋 = 𝑌 → ( ⊥ ‘ 𝑌 ) = ( ⊥ ‘ 𝑋 ) ) |
| 5 | fveq2 | ⊢ ( ( ⊥ ‘ 𝑋 ) = ( ⊥ ‘ 𝑌 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) | |
| 6 | 5 | eqcoms | ⊢ ( ( ⊥ ‘ 𝑌 ) = ( ⊥ ‘ 𝑋 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) |
| 7 | 1 2 | opococ | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) |
| 8 | 7 | 3adant3 | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) |
| 9 | 1 2 | opococ | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) = 𝑌 ) |
| 10 | 9 | 3adant2 | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) = 𝑌 ) |
| 11 | 8 10 | eqeq12d | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ↔ 𝑋 = 𝑌 ) ) |
| 12 | 6 11 | imbitrid | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑌 ) = ( ⊥ ‘ 𝑋 ) → 𝑋 = 𝑌 ) ) |
| 13 | 4 12 | impbid2 | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 = 𝑌 ↔ ( ⊥ ‘ 𝑌 ) = ( ⊥ ‘ 𝑋 ) ) ) |