This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The orthomodular law. (Contributed by NM, 18-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | omllaw.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| omllaw.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| omllaw.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| omllaw.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| omllaw.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | ||
| Assertion | omllaw | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 → 𝑌 = ( 𝑋 ∨ ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omllaw.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | omllaw.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | omllaw.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 4 | omllaw.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 5 | omllaw.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | |
| 6 | 1 2 3 4 5 | isoml | ⊢ ( 𝐾 ∈ OML ↔ ( 𝐾 ∈ OL ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → 𝑦 = ( 𝑥 ∨ ( 𝑦 ∧ ( ⊥ ‘ 𝑥 ) ) ) ) ) ) |
| 7 | 6 | simprbi | ⊢ ( 𝐾 ∈ OML → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → 𝑦 = ( 𝑥 ∨ ( 𝑦 ∧ ( ⊥ ‘ 𝑥 ) ) ) ) ) |
| 8 | breq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 ≤ 𝑦 ↔ 𝑋 ≤ 𝑦 ) ) | |
| 9 | id | ⊢ ( 𝑥 = 𝑋 → 𝑥 = 𝑋 ) | |
| 10 | fveq2 | ⊢ ( 𝑥 = 𝑋 → ( ⊥ ‘ 𝑥 ) = ( ⊥ ‘ 𝑋 ) ) | |
| 11 | 10 | oveq2d | ⊢ ( 𝑥 = 𝑋 → ( 𝑦 ∧ ( ⊥ ‘ 𝑥 ) ) = ( 𝑦 ∧ ( ⊥ ‘ 𝑋 ) ) ) |
| 12 | 9 11 | oveq12d | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∨ ( 𝑦 ∧ ( ⊥ ‘ 𝑥 ) ) ) = ( 𝑋 ∨ ( 𝑦 ∧ ( ⊥ ‘ 𝑋 ) ) ) ) |
| 13 | 12 | eqeq2d | ⊢ ( 𝑥 = 𝑋 → ( 𝑦 = ( 𝑥 ∨ ( 𝑦 ∧ ( ⊥ ‘ 𝑥 ) ) ) ↔ 𝑦 = ( 𝑋 ∨ ( 𝑦 ∧ ( ⊥ ‘ 𝑋 ) ) ) ) ) |
| 14 | 8 13 | imbi12d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ≤ 𝑦 → 𝑦 = ( 𝑥 ∨ ( 𝑦 ∧ ( ⊥ ‘ 𝑥 ) ) ) ) ↔ ( 𝑋 ≤ 𝑦 → 𝑦 = ( 𝑋 ∨ ( 𝑦 ∧ ( ⊥ ‘ 𝑋 ) ) ) ) ) ) |
| 15 | breq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝑋 ≤ 𝑦 ↔ 𝑋 ≤ 𝑌 ) ) | |
| 16 | id | ⊢ ( 𝑦 = 𝑌 → 𝑦 = 𝑌 ) | |
| 17 | oveq1 | ⊢ ( 𝑦 = 𝑌 → ( 𝑦 ∧ ( ⊥ ‘ 𝑋 ) ) = ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) ) | |
| 18 | 17 | oveq2d | ⊢ ( 𝑦 = 𝑌 → ( 𝑋 ∨ ( 𝑦 ∧ ( ⊥ ‘ 𝑋 ) ) ) = ( 𝑋 ∨ ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) ) ) |
| 19 | 16 18 | eqeq12d | ⊢ ( 𝑦 = 𝑌 → ( 𝑦 = ( 𝑋 ∨ ( 𝑦 ∧ ( ⊥ ‘ 𝑋 ) ) ) ↔ 𝑌 = ( 𝑋 ∨ ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) ) ) ) |
| 20 | 15 19 | imbi12d | ⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 ≤ 𝑦 → 𝑦 = ( 𝑋 ∨ ( 𝑦 ∧ ( ⊥ ‘ 𝑋 ) ) ) ) ↔ ( 𝑋 ≤ 𝑌 → 𝑌 = ( 𝑋 ∨ ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) ) ) ) ) |
| 21 | 14 20 | rspc2v | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → 𝑦 = ( 𝑥 ∨ ( 𝑦 ∧ ( ⊥ ‘ 𝑥 ) ) ) ) → ( 𝑋 ≤ 𝑌 → 𝑌 = ( 𝑋 ∨ ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) ) ) ) ) |
| 22 | 7 21 | syl5com | ⊢ ( 𝐾 ∈ OML → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 → 𝑌 = ( 𝑋 ∨ ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) ) ) ) ) |
| 23 | 22 | 3impib | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 → 𝑌 = ( 𝑋 ∨ ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) ) ) ) |