This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double negative law for orthoposets. ( ococ analog.) (Contributed by NM, 13-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opoccl.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| opoccl.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | ||
| Assertion | opococ | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opoccl.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | opoccl.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | |
| 3 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 4 | eqid | ⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) | |
| 5 | eqid | ⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) | |
| 6 | eqid | ⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) | |
| 7 | eqid | ⊢ ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 ) | |
| 8 | 1 3 2 4 5 6 7 | oposlem | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ∧ ( 𝑋 ( le ‘ 𝐾 ) 𝑋 → ( ⊥ ‘ 𝑋 ) ( le ‘ 𝐾 ) ( ⊥ ‘ 𝑋 ) ) ) ∧ ( 𝑋 ( join ‘ 𝐾 ) ( ⊥ ‘ 𝑋 ) ) = ( 1. ‘ 𝐾 ) ∧ ( 𝑋 ( meet ‘ 𝐾 ) ( ⊥ ‘ 𝑋 ) ) = ( 0. ‘ 𝐾 ) ) ) |
| 9 | 8 | 3anidm23 | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ( ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ∧ ( 𝑋 ( le ‘ 𝐾 ) 𝑋 → ( ⊥ ‘ 𝑋 ) ( le ‘ 𝐾 ) ( ⊥ ‘ 𝑋 ) ) ) ∧ ( 𝑋 ( join ‘ 𝐾 ) ( ⊥ ‘ 𝑋 ) ) = ( 1. ‘ 𝐾 ) ∧ ( 𝑋 ( meet ‘ 𝐾 ) ( ⊥ ‘ 𝑋 ) ) = ( 0. ‘ 𝐾 ) ) ) |
| 10 | 9 | simp1d | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ∧ ( 𝑋 ( le ‘ 𝐾 ) 𝑋 → ( ⊥ ‘ 𝑋 ) ( le ‘ 𝐾 ) ( ⊥ ‘ 𝑋 ) ) ) ) |
| 11 | 10 | simp2d | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) |