This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The mapping G (see om2uz0i ) preserves order. (Contributed by NM, 4-May-2005) (Revised by Mario Carneiro, 13-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | om2uz.1 | |- C e. ZZ |
|
| om2uz.2 | |- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , C ) |` _om ) |
||
| Assertion | om2uzlt2i | |- ( ( A e. _om /\ B e. _om ) -> ( A e. B <-> ( G ` A ) < ( G ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om2uz.1 | |- C e. ZZ |
|
| 2 | om2uz.2 | |- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , C ) |` _om ) |
|
| 3 | 1 2 | om2uzlti | |- ( ( A e. _om /\ B e. _om ) -> ( A e. B -> ( G ` A ) < ( G ` B ) ) ) |
| 4 | 1 2 | om2uzlti | |- ( ( B e. _om /\ A e. _om ) -> ( B e. A -> ( G ` B ) < ( G ` A ) ) ) |
| 5 | fveq2 | |- ( B = A -> ( G ` B ) = ( G ` A ) ) |
|
| 6 | 5 | a1i | |- ( ( B e. _om /\ A e. _om ) -> ( B = A -> ( G ` B ) = ( G ` A ) ) ) |
| 7 | 4 6 | orim12d | |- ( ( B e. _om /\ A e. _om ) -> ( ( B e. A \/ B = A ) -> ( ( G ` B ) < ( G ` A ) \/ ( G ` B ) = ( G ` A ) ) ) ) |
| 8 | 7 | ancoms | |- ( ( A e. _om /\ B e. _om ) -> ( ( B e. A \/ B = A ) -> ( ( G ` B ) < ( G ` A ) \/ ( G ` B ) = ( G ` A ) ) ) ) |
| 9 | nnon | |- ( B e. _om -> B e. On ) |
|
| 10 | nnon | |- ( A e. _om -> A e. On ) |
|
| 11 | onsseleq | |- ( ( B e. On /\ A e. On ) -> ( B C_ A <-> ( B e. A \/ B = A ) ) ) |
|
| 12 | ontri1 | |- ( ( B e. On /\ A e. On ) -> ( B C_ A <-> -. A e. B ) ) |
|
| 13 | 11 12 | bitr3d | |- ( ( B e. On /\ A e. On ) -> ( ( B e. A \/ B = A ) <-> -. A e. B ) ) |
| 14 | 9 10 13 | syl2anr | |- ( ( A e. _om /\ B e. _om ) -> ( ( B e. A \/ B = A ) <-> -. A e. B ) ) |
| 15 | 1 2 | om2uzuzi | |- ( B e. _om -> ( G ` B ) e. ( ZZ>= ` C ) ) |
| 16 | eluzelre | |- ( ( G ` B ) e. ( ZZ>= ` C ) -> ( G ` B ) e. RR ) |
|
| 17 | 15 16 | syl | |- ( B e. _om -> ( G ` B ) e. RR ) |
| 18 | 1 2 | om2uzuzi | |- ( A e. _om -> ( G ` A ) e. ( ZZ>= ` C ) ) |
| 19 | eluzelre | |- ( ( G ` A ) e. ( ZZ>= ` C ) -> ( G ` A ) e. RR ) |
|
| 20 | 18 19 | syl | |- ( A e. _om -> ( G ` A ) e. RR ) |
| 21 | leloe | |- ( ( ( G ` B ) e. RR /\ ( G ` A ) e. RR ) -> ( ( G ` B ) <_ ( G ` A ) <-> ( ( G ` B ) < ( G ` A ) \/ ( G ` B ) = ( G ` A ) ) ) ) |
|
| 22 | lenlt | |- ( ( ( G ` B ) e. RR /\ ( G ` A ) e. RR ) -> ( ( G ` B ) <_ ( G ` A ) <-> -. ( G ` A ) < ( G ` B ) ) ) |
|
| 23 | 21 22 | bitr3d | |- ( ( ( G ` B ) e. RR /\ ( G ` A ) e. RR ) -> ( ( ( G ` B ) < ( G ` A ) \/ ( G ` B ) = ( G ` A ) ) <-> -. ( G ` A ) < ( G ` B ) ) ) |
| 24 | 17 20 23 | syl2anr | |- ( ( A e. _om /\ B e. _om ) -> ( ( ( G ` B ) < ( G ` A ) \/ ( G ` B ) = ( G ` A ) ) <-> -. ( G ` A ) < ( G ` B ) ) ) |
| 25 | 8 14 24 | 3imtr3d | |- ( ( A e. _om /\ B e. _om ) -> ( -. A e. B -> -. ( G ` A ) < ( G ` B ) ) ) |
| 26 | 3 25 | impcon4bid | |- ( ( A e. _om /\ B e. _om ) -> ( A e. B <-> ( G ` A ) < ( G ` B ) ) ) |