This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Range of G (see om2uz0i ). (Contributed by NM, 3-Oct-2004) (Revised by Mario Carneiro, 13-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | om2uz.1 | ⊢ 𝐶 ∈ ℤ | |
| om2uz.2 | ⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω ) | ||
| Assertion | om2uzrani | ⊢ ran 𝐺 = ( ℤ≥ ‘ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om2uz.1 | ⊢ 𝐶 ∈ ℤ | |
| 2 | om2uz.2 | ⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω ) | |
| 3 | frfnom | ⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω ) Fn ω | |
| 4 | 2 | fneq1i | ⊢ ( 𝐺 Fn ω ↔ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω ) Fn ω ) |
| 5 | 3 4 | mpbir | ⊢ 𝐺 Fn ω |
| 6 | fvelrnb | ⊢ ( 𝐺 Fn ω → ( 𝑦 ∈ ran 𝐺 ↔ ∃ 𝑧 ∈ ω ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) | |
| 7 | 5 6 | ax-mp | ⊢ ( 𝑦 ∈ ran 𝐺 ↔ ∃ 𝑧 ∈ ω ( 𝐺 ‘ 𝑧 ) = 𝑦 ) |
| 8 | 1 2 | om2uzuzi | ⊢ ( 𝑧 ∈ ω → ( 𝐺 ‘ 𝑧 ) ∈ ( ℤ≥ ‘ 𝐶 ) ) |
| 9 | eleq1 | ⊢ ( ( 𝐺 ‘ 𝑧 ) = 𝑦 → ( ( 𝐺 ‘ 𝑧 ) ∈ ( ℤ≥ ‘ 𝐶 ) ↔ 𝑦 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) | |
| 10 | 8 9 | syl5ibcom | ⊢ ( 𝑧 ∈ ω → ( ( 𝐺 ‘ 𝑧 ) = 𝑦 → 𝑦 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) |
| 11 | 10 | rexlimiv | ⊢ ( ∃ 𝑧 ∈ ω ( 𝐺 ‘ 𝑧 ) = 𝑦 → 𝑦 ∈ ( ℤ≥ ‘ 𝐶 ) ) |
| 12 | 7 11 | sylbi | ⊢ ( 𝑦 ∈ ran 𝐺 → 𝑦 ∈ ( ℤ≥ ‘ 𝐶 ) ) |
| 13 | eleq1 | ⊢ ( 𝑧 = 𝐶 → ( 𝑧 ∈ ran 𝐺 ↔ 𝐶 ∈ ran 𝐺 ) ) | |
| 14 | eleq1 | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∈ ran 𝐺 ↔ 𝑦 ∈ ran 𝐺 ) ) | |
| 15 | eleq1 | ⊢ ( 𝑧 = ( 𝑦 + 1 ) → ( 𝑧 ∈ ran 𝐺 ↔ ( 𝑦 + 1 ) ∈ ran 𝐺 ) ) | |
| 16 | 1 2 | om2uz0i | ⊢ ( 𝐺 ‘ ∅ ) = 𝐶 |
| 17 | peano1 | ⊢ ∅ ∈ ω | |
| 18 | fnfvelrn | ⊢ ( ( 𝐺 Fn ω ∧ ∅ ∈ ω ) → ( 𝐺 ‘ ∅ ) ∈ ran 𝐺 ) | |
| 19 | 5 17 18 | mp2an | ⊢ ( 𝐺 ‘ ∅ ) ∈ ran 𝐺 |
| 20 | 16 19 | eqeltrri | ⊢ 𝐶 ∈ ran 𝐺 |
| 21 | 1 2 | om2uzsuci | ⊢ ( 𝑧 ∈ ω → ( 𝐺 ‘ suc 𝑧 ) = ( ( 𝐺 ‘ 𝑧 ) + 1 ) ) |
| 22 | oveq1 | ⊢ ( ( 𝐺 ‘ 𝑧 ) = 𝑦 → ( ( 𝐺 ‘ 𝑧 ) + 1 ) = ( 𝑦 + 1 ) ) | |
| 23 | 21 22 | sylan9eq | ⊢ ( ( 𝑧 ∈ ω ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) → ( 𝐺 ‘ suc 𝑧 ) = ( 𝑦 + 1 ) ) |
| 24 | peano2 | ⊢ ( 𝑧 ∈ ω → suc 𝑧 ∈ ω ) | |
| 25 | fnfvelrn | ⊢ ( ( 𝐺 Fn ω ∧ suc 𝑧 ∈ ω ) → ( 𝐺 ‘ suc 𝑧 ) ∈ ran 𝐺 ) | |
| 26 | 5 24 25 | sylancr | ⊢ ( 𝑧 ∈ ω → ( 𝐺 ‘ suc 𝑧 ) ∈ ran 𝐺 ) |
| 27 | 26 | adantr | ⊢ ( ( 𝑧 ∈ ω ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) → ( 𝐺 ‘ suc 𝑧 ) ∈ ran 𝐺 ) |
| 28 | 23 27 | eqeltrrd | ⊢ ( ( 𝑧 ∈ ω ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) → ( 𝑦 + 1 ) ∈ ran 𝐺 ) |
| 29 | 28 | rexlimiva | ⊢ ( ∃ 𝑧 ∈ ω ( 𝐺 ‘ 𝑧 ) = 𝑦 → ( 𝑦 + 1 ) ∈ ran 𝐺 ) |
| 30 | 7 29 | sylbi | ⊢ ( 𝑦 ∈ ran 𝐺 → ( 𝑦 + 1 ) ∈ ran 𝐺 ) |
| 31 | 30 | a1i | ⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝐶 ) → ( 𝑦 ∈ ran 𝐺 → ( 𝑦 + 1 ) ∈ ran 𝐺 ) ) |
| 32 | 13 14 15 14 20 31 | uzind4i | ⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝐶 ) → 𝑦 ∈ ran 𝐺 ) |
| 33 | 12 32 | impbii | ⊢ ( 𝑦 ∈ ran 𝐺 ↔ 𝑦 ∈ ( ℤ≥ ‘ 𝐶 ) ) |
| 34 | 33 | eqriv | ⊢ ran 𝐺 = ( ℤ≥ ‘ 𝐶 ) |