This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The meet of an ortholattice element with one equals itself. ( chm1i analog.) (Contributed by NM, 22-May-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | olm1.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| olm1.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| olm1.u | ⊢ 1 = ( 1. ‘ 𝐾 ) | ||
| Assertion | olm11 | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∧ 1 ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olm1.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | olm1.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 3 | olm1.u | ⊢ 1 = ( 1. ‘ 𝐾 ) | |
| 4 | olop | ⊢ ( 𝐾 ∈ OL → 𝐾 ∈ OP ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ OP ) |
| 6 | eqid | ⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) | |
| 7 | eqid | ⊢ ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 ) | |
| 8 | 6 3 7 | opoc1 | ⊢ ( 𝐾 ∈ OP → ( ( oc ‘ 𝐾 ) ‘ 1 ) = ( 0. ‘ 𝐾 ) ) |
| 9 | 5 8 | syl | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 1 ) = ( 0. ‘ 𝐾 ) ) |
| 10 | 9 | oveq2d | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 1 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( 0. ‘ 𝐾 ) ) ) |
| 11 | 1 7 | opoccl | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 12 | 4 11 | sylan | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 13 | eqid | ⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) | |
| 14 | 1 13 6 | olj01 | ⊢ ( ( 𝐾 ∈ OL ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( 0. ‘ 𝐾 ) ) = ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) |
| 15 | 12 14 | syldan | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( 0. ‘ 𝐾 ) ) = ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) |
| 16 | 10 15 | eqtrd | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 1 ) ) = ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) |
| 17 | 16 | fveq2d | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 1 ) ) ) = ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
| 18 | 1 3 | op1cl | ⊢ ( 𝐾 ∈ OP → 1 ∈ 𝐵 ) |
| 19 | 5 18 | syl | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → 1 ∈ 𝐵 ) |
| 20 | 1 13 2 7 | oldmj4 | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 1 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 1 ) ) ) = ( 𝑋 ∧ 1 ) ) |
| 21 | 19 20 | mpd3an3 | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 1 ) ) ) = ( 𝑋 ∧ 1 ) ) |
| 22 | 1 7 | opococ | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) = 𝑋 ) |
| 23 | 4 22 | sylan | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) = 𝑋 ) |
| 24 | 17 21 23 | 3eqtr3d | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∧ 1 ) = 𝑋 ) |