This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Orthocomplement of orthoposet unity. (Contributed by NM, 24-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opoc1.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | |
| opoc1.u | ⊢ 1 = ( 1. ‘ 𝐾 ) | ||
| opoc1.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | ||
| Assertion | opoc1 | ⊢ ( 𝐾 ∈ OP → ( ⊥ ‘ 1 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opoc1.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | |
| 2 | opoc1.u | ⊢ 1 = ( 1. ‘ 𝐾 ) | |
| 3 | opoc1.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 5 | 4 1 | op0cl | ⊢ ( 𝐾 ∈ OP → 0 ∈ ( Base ‘ 𝐾 ) ) |
| 6 | 4 3 | opoccl | ⊢ ( ( 𝐾 ∈ OP ∧ 0 ∈ ( Base ‘ 𝐾 ) ) → ( ⊥ ‘ 0 ) ∈ ( Base ‘ 𝐾 ) ) |
| 7 | 5 6 | mpdan | ⊢ ( 𝐾 ∈ OP → ( ⊥ ‘ 0 ) ∈ ( Base ‘ 𝐾 ) ) |
| 8 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 9 | 4 8 2 | ople1 | ⊢ ( ( 𝐾 ∈ OP ∧ ( ⊥ ‘ 0 ) ∈ ( Base ‘ 𝐾 ) ) → ( ⊥ ‘ 0 ) ( le ‘ 𝐾 ) 1 ) |
| 10 | 7 9 | mpdan | ⊢ ( 𝐾 ∈ OP → ( ⊥ ‘ 0 ) ( le ‘ 𝐾 ) 1 ) |
| 11 | 4 2 | op1cl | ⊢ ( 𝐾 ∈ OP → 1 ∈ ( Base ‘ 𝐾 ) ) |
| 12 | 4 8 3 | oplecon1b | ⊢ ( ( 𝐾 ∈ OP ∧ 1 ∈ ( Base ‘ 𝐾 ) ∧ 0 ∈ ( Base ‘ 𝐾 ) ) → ( ( ⊥ ‘ 1 ) ( le ‘ 𝐾 ) 0 ↔ ( ⊥ ‘ 0 ) ( le ‘ 𝐾 ) 1 ) ) |
| 13 | 11 5 12 | mpd3an23 | ⊢ ( 𝐾 ∈ OP → ( ( ⊥ ‘ 1 ) ( le ‘ 𝐾 ) 0 ↔ ( ⊥ ‘ 0 ) ( le ‘ 𝐾 ) 1 ) ) |
| 14 | 10 13 | mpbird | ⊢ ( 𝐾 ∈ OP → ( ⊥ ‘ 1 ) ( le ‘ 𝐾 ) 0 ) |
| 15 | 4 3 | opoccl | ⊢ ( ( 𝐾 ∈ OP ∧ 1 ∈ ( Base ‘ 𝐾 ) ) → ( ⊥ ‘ 1 ) ∈ ( Base ‘ 𝐾 ) ) |
| 16 | 11 15 | mpdan | ⊢ ( 𝐾 ∈ OP → ( ⊥ ‘ 1 ) ∈ ( Base ‘ 𝐾 ) ) |
| 17 | 4 8 1 | ople0 | ⊢ ( ( 𝐾 ∈ OP ∧ ( ⊥ ‘ 1 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ⊥ ‘ 1 ) ( le ‘ 𝐾 ) 0 ↔ ( ⊥ ‘ 1 ) = 0 ) ) |
| 18 | 16 17 | mpdan | ⊢ ( 𝐾 ∈ OP → ( ( ⊥ ‘ 1 ) ( le ‘ 𝐾 ) 0 ↔ ( ⊥ ‘ 1 ) = 0 ) ) |
| 19 | 14 18 | mpbid | ⊢ ( 𝐾 ∈ OP → ( ⊥ ‘ 1 ) = 0 ) |