This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The meet of an ortholattice element with one equals itself. (Contributed by NM, 22-May-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | olm1.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| olm1.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| olm1.u | ⊢ 1 = ( 1. ‘ 𝐾 ) | ||
| Assertion | olm12 | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( 1 ∧ 𝑋 ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olm1.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | olm1.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 3 | olm1.u | ⊢ 1 = ( 1. ‘ 𝐾 ) | |
| 4 | ollat | ⊢ ( 𝐾 ∈ OL → 𝐾 ∈ Lat ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ Lat ) |
| 6 | olop | ⊢ ( 𝐾 ∈ OL → 𝐾 ∈ OP ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ OP ) |
| 8 | 1 3 | op1cl | ⊢ ( 𝐾 ∈ OP → 1 ∈ 𝐵 ) |
| 9 | 7 8 | syl | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → 1 ∈ 𝐵 ) |
| 10 | simpr | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 11 | 1 2 | latmcom | ⊢ ( ( 𝐾 ∈ Lat ∧ 1 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 1 ∧ 𝑋 ) = ( 𝑋 ∧ 1 ) ) |
| 12 | 5 9 10 11 | syl3anc | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( 1 ∧ 𝑋 ) = ( 𝑋 ∧ 1 ) ) |
| 13 | 1 2 3 | olm11 | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∧ 1 ) = 𝑋 ) |
| 14 | 12 13 | eqtrd | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( 1 ∧ 𝑋 ) = 𝑋 ) |