This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The meet of an ortholattice element with one equals itself. ( chm1i analog.) (Contributed by NM, 22-May-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | olm1.b | |- B = ( Base ` K ) |
|
| olm1.m | |- ./\ = ( meet ` K ) |
||
| olm1.u | |- .1. = ( 1. ` K ) |
||
| Assertion | olm11 | |- ( ( K e. OL /\ X e. B ) -> ( X ./\ .1. ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olm1.b | |- B = ( Base ` K ) |
|
| 2 | olm1.m | |- ./\ = ( meet ` K ) |
|
| 3 | olm1.u | |- .1. = ( 1. ` K ) |
|
| 4 | olop | |- ( K e. OL -> K e. OP ) |
|
| 5 | 4 | adantr | |- ( ( K e. OL /\ X e. B ) -> K e. OP ) |
| 6 | eqid | |- ( 0. ` K ) = ( 0. ` K ) |
|
| 7 | eqid | |- ( oc ` K ) = ( oc ` K ) |
|
| 8 | 6 3 7 | opoc1 | |- ( K e. OP -> ( ( oc ` K ) ` .1. ) = ( 0. ` K ) ) |
| 9 | 5 8 | syl | |- ( ( K e. OL /\ X e. B ) -> ( ( oc ` K ) ` .1. ) = ( 0. ` K ) ) |
| 10 | 9 | oveq2d | |- ( ( K e. OL /\ X e. B ) -> ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` .1. ) ) = ( ( ( oc ` K ) ` X ) ( join ` K ) ( 0. ` K ) ) ) |
| 11 | 1 7 | opoccl | |- ( ( K e. OP /\ X e. B ) -> ( ( oc ` K ) ` X ) e. B ) |
| 12 | 4 11 | sylan | |- ( ( K e. OL /\ X e. B ) -> ( ( oc ` K ) ` X ) e. B ) |
| 13 | eqid | |- ( join ` K ) = ( join ` K ) |
|
| 14 | 1 13 6 | olj01 | |- ( ( K e. OL /\ ( ( oc ` K ) ` X ) e. B ) -> ( ( ( oc ` K ) ` X ) ( join ` K ) ( 0. ` K ) ) = ( ( oc ` K ) ` X ) ) |
| 15 | 12 14 | syldan | |- ( ( K e. OL /\ X e. B ) -> ( ( ( oc ` K ) ` X ) ( join ` K ) ( 0. ` K ) ) = ( ( oc ` K ) ` X ) ) |
| 16 | 10 15 | eqtrd | |- ( ( K e. OL /\ X e. B ) -> ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` .1. ) ) = ( ( oc ` K ) ` X ) ) |
| 17 | 16 | fveq2d | |- ( ( K e. OL /\ X e. B ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` .1. ) ) ) = ( ( oc ` K ) ` ( ( oc ` K ) ` X ) ) ) |
| 18 | 1 3 | op1cl | |- ( K e. OP -> .1. e. B ) |
| 19 | 5 18 | syl | |- ( ( K e. OL /\ X e. B ) -> .1. e. B ) |
| 20 | 1 13 2 7 | oldmj4 | |- ( ( K e. OL /\ X e. B /\ .1. e. B ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` .1. ) ) ) = ( X ./\ .1. ) ) |
| 21 | 19 20 | mpd3an3 | |- ( ( K e. OL /\ X e. B ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` .1. ) ) ) = ( X ./\ .1. ) ) |
| 22 | 1 7 | opococ | |- ( ( K e. OP /\ X e. B ) -> ( ( oc ` K ) ` ( ( oc ` K ) ` X ) ) = X ) |
| 23 | 4 22 | sylan | |- ( ( K e. OL /\ X e. B ) -> ( ( oc ` K ) ` ( ( oc ` K ) ` X ) ) = X ) |
| 24 | 17 21 23 | 3eqtr3d | |- ( ( K e. OL /\ X e. B ) -> ( X ./\ .1. ) = X ) |