This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ortholattice element joined with zero equals itself. ( chj0 analog.) (Contributed by NM, 19-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | olj0.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| olj0.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| olj0.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | ||
| Assertion | olj01 | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∨ 0 ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olj0.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | olj0.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | olj0.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | |
| 4 | olop | ⊢ ( 𝐾 ∈ OL → 𝐾 ∈ OP ) | |
| 5 | 1 3 | op0cl | ⊢ ( 𝐾 ∈ OP → 0 ∈ 𝐵 ) |
| 6 | 4 5 | syl | ⊢ ( 𝐾 ∈ OL → 0 ∈ 𝐵 ) |
| 7 | 6 | adantr | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → 0 ∈ 𝐵 ) |
| 8 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 9 | ollat | ⊢ ( 𝐾 ∈ OL → 𝐾 ∈ Lat ) | |
| 10 | 9 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ) → 𝐾 ∈ Lat ) |
| 11 | 1 2 | latjcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ) → ( 𝑋 ∨ 0 ) ∈ 𝐵 ) |
| 12 | 9 11 | syl3an1 | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ) → ( 𝑋 ∨ 0 ) ∈ 𝐵 ) |
| 13 | simp2 | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 14 | 1 8 | latref | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ( le ‘ 𝐾 ) 𝑋 ) |
| 15 | 9 14 | sylan | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ( le ‘ 𝐾 ) 𝑋 ) |
| 16 | 15 | 3adant3 | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ) → 𝑋 ( le ‘ 𝐾 ) 𝑋 ) |
| 17 | 1 8 3 | op0le | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → 0 ( le ‘ 𝐾 ) 𝑋 ) |
| 18 | 4 17 | sylan | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → 0 ( le ‘ 𝐾 ) 𝑋 ) |
| 19 | 18 | 3adant3 | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ) → 0 ( le ‘ 𝐾 ) 𝑋 ) |
| 20 | simp3 | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ) → 0 ∈ 𝐵 ) | |
| 21 | 1 8 2 | latjle12 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑋 ( le ‘ 𝐾 ) 𝑋 ∧ 0 ( le ‘ 𝐾 ) 𝑋 ) ↔ ( 𝑋 ∨ 0 ) ( le ‘ 𝐾 ) 𝑋 ) ) |
| 22 | 10 13 20 13 21 | syl13anc | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ) → ( ( 𝑋 ( le ‘ 𝐾 ) 𝑋 ∧ 0 ( le ‘ 𝐾 ) 𝑋 ) ↔ ( 𝑋 ∨ 0 ) ( le ‘ 𝐾 ) 𝑋 ) ) |
| 23 | 16 19 22 | mpbi2and | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ) → ( 𝑋 ∨ 0 ) ( le ‘ 𝐾 ) 𝑋 ) |
| 24 | 1 8 2 | latlej1 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ) → 𝑋 ( le ‘ 𝐾 ) ( 𝑋 ∨ 0 ) ) |
| 25 | 9 24 | syl3an1 | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ) → 𝑋 ( le ‘ 𝐾 ) ( 𝑋 ∨ 0 ) ) |
| 26 | 1 8 10 12 13 23 25 | latasymd | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ) → ( 𝑋 ∨ 0 ) = 𝑋 ) |
| 27 | 7 26 | mpd3an3 | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∨ 0 ) = 𝑋 ) |