This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem olop

Description: An ortholattice is an orthoposet. (Contributed by NM, 18-Sep-2011)

Ref Expression
Assertion olop ( 𝐾 ∈ OL → 𝐾 ∈ OP )

Proof

Step Hyp Ref Expression
1 isolat ( 𝐾 ∈ OL ↔ ( 𝐾 ∈ Lat ∧ 𝐾 ∈ OP ) )
2 1 simprbi ( 𝐾 ∈ OL → 𝐾 ∈ OP )