This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak ordering property of ordinal exponentiation. (Contributed by NM, 6-Jan-2005) (Revised by Mario Carneiro, 24-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oeword | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ( On ∖ 2o ) ) → ( 𝐴 ⊆ 𝐵 ↔ ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oeord | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ( On ∖ 2o ) ) → ( 𝐴 ∈ 𝐵 ↔ ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝐵 ) ) ) | |
| 2 | oecan | ⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐶 ↑o 𝐴 ) = ( 𝐶 ↑o 𝐵 ) ↔ 𝐴 = 𝐵 ) ) | |
| 3 | 2 | 3coml | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ( On ∖ 2o ) ) → ( ( 𝐶 ↑o 𝐴 ) = ( 𝐶 ↑o 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |
| 4 | 3 | bicomd | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ( On ∖ 2o ) ) → ( 𝐴 = 𝐵 ↔ ( 𝐶 ↑o 𝐴 ) = ( 𝐶 ↑o 𝐵 ) ) ) |
| 5 | 1 4 | orbi12d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ( On ∖ 2o ) ) → ( ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) ↔ ( ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝐵 ) ∨ ( 𝐶 ↑o 𝐴 ) = ( 𝐶 ↑o 𝐵 ) ) ) ) |
| 6 | onsseleq | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) ) ) | |
| 7 | 6 | 3adant3 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ( On ∖ 2o ) ) → ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) ) ) |
| 8 | eldifi | ⊢ ( 𝐶 ∈ ( On ∖ 2o ) → 𝐶 ∈ On ) | |
| 9 | id | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) | |
| 10 | oecl | ⊢ ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐶 ↑o 𝐴 ) ∈ On ) | |
| 11 | oecl | ⊢ ( ( 𝐶 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐶 ↑o 𝐵 ) ∈ On ) | |
| 12 | 10 11 | anim12dan | ⊢ ( ( 𝐶 ∈ On ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) → ( ( 𝐶 ↑o 𝐴 ) ∈ On ∧ ( 𝐶 ↑o 𝐵 ) ∈ On ) ) |
| 13 | onsseleq | ⊢ ( ( ( 𝐶 ↑o 𝐴 ) ∈ On ∧ ( 𝐶 ↑o 𝐵 ) ∈ On ) → ( ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ↔ ( ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝐵 ) ∨ ( 𝐶 ↑o 𝐴 ) = ( 𝐶 ↑o 𝐵 ) ) ) ) | |
| 14 | 12 13 | syl | ⊢ ( ( 𝐶 ∈ On ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) → ( ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ↔ ( ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝐵 ) ∨ ( 𝐶 ↑o 𝐴 ) = ( 𝐶 ↑o 𝐵 ) ) ) ) |
| 15 | 8 9 14 | syl2anr | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ ( On ∖ 2o ) ) → ( ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ↔ ( ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝐵 ) ∨ ( 𝐶 ↑o 𝐴 ) = ( 𝐶 ↑o 𝐵 ) ) ) ) |
| 16 | 15 | 3impa | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ( On ∖ 2o ) ) → ( ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ↔ ( ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝐵 ) ∨ ( 𝐶 ↑o 𝐴 ) = ( 𝐶 ↑o 𝐵 ) ) ) ) |
| 17 | 5 7 16 | 3bitr4d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ( On ∖ 2o ) ) → ( 𝐴 ⊆ 𝐵 ↔ ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ) ) |