This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak ordering property of ordinal exponentiation. (Contributed by NM, 6-Jan-2005) (Revised by Mario Carneiro, 24-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oeword | |- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( A C_ B <-> ( C ^o A ) C_ ( C ^o B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oeord | |- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( A e. B <-> ( C ^o A ) e. ( C ^o B ) ) ) |
|
| 2 | oecan | |- ( ( C e. ( On \ 2o ) /\ A e. On /\ B e. On ) -> ( ( C ^o A ) = ( C ^o B ) <-> A = B ) ) |
|
| 3 | 2 | 3coml | |- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( ( C ^o A ) = ( C ^o B ) <-> A = B ) ) |
| 4 | 3 | bicomd | |- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( A = B <-> ( C ^o A ) = ( C ^o B ) ) ) |
| 5 | 1 4 | orbi12d | |- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( ( A e. B \/ A = B ) <-> ( ( C ^o A ) e. ( C ^o B ) \/ ( C ^o A ) = ( C ^o B ) ) ) ) |
| 6 | onsseleq | |- ( ( A e. On /\ B e. On ) -> ( A C_ B <-> ( A e. B \/ A = B ) ) ) |
|
| 7 | 6 | 3adant3 | |- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( A C_ B <-> ( A e. B \/ A = B ) ) ) |
| 8 | eldifi | |- ( C e. ( On \ 2o ) -> C e. On ) |
|
| 9 | id | |- ( ( A e. On /\ B e. On ) -> ( A e. On /\ B e. On ) ) |
|
| 10 | oecl | |- ( ( C e. On /\ A e. On ) -> ( C ^o A ) e. On ) |
|
| 11 | oecl | |- ( ( C e. On /\ B e. On ) -> ( C ^o B ) e. On ) |
|
| 12 | 10 11 | anim12dan | |- ( ( C e. On /\ ( A e. On /\ B e. On ) ) -> ( ( C ^o A ) e. On /\ ( C ^o B ) e. On ) ) |
| 13 | onsseleq | |- ( ( ( C ^o A ) e. On /\ ( C ^o B ) e. On ) -> ( ( C ^o A ) C_ ( C ^o B ) <-> ( ( C ^o A ) e. ( C ^o B ) \/ ( C ^o A ) = ( C ^o B ) ) ) ) |
|
| 14 | 12 13 | syl | |- ( ( C e. On /\ ( A e. On /\ B e. On ) ) -> ( ( C ^o A ) C_ ( C ^o B ) <-> ( ( C ^o A ) e. ( C ^o B ) \/ ( C ^o A ) = ( C ^o B ) ) ) ) |
| 15 | 8 9 14 | syl2anr | |- ( ( ( A e. On /\ B e. On ) /\ C e. ( On \ 2o ) ) -> ( ( C ^o A ) C_ ( C ^o B ) <-> ( ( C ^o A ) e. ( C ^o B ) \/ ( C ^o A ) = ( C ^o B ) ) ) ) |
| 16 | 15 | 3impa | |- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( ( C ^o A ) C_ ( C ^o B ) <-> ( ( C ^o A ) e. ( C ^o B ) \/ ( C ^o A ) = ( C ^o B ) ) ) ) |
| 17 | 5 7 16 | 3bitr4d | |- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( A C_ B <-> ( C ^o A ) C_ ( C ^o B ) ) ) |