This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordinal exponentiation with a limit exponent. Part of Exercise 4.36 of Mendelson p. 250. (Contributed by NM, 6-Jan-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oelim2 | |- ( ( A e. On /\ ( B e. C /\ Lim B ) ) -> ( A ^o B ) = U_ x e. ( B \ 1o ) ( A ^o x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limelon | |- ( ( B e. C /\ Lim B ) -> B e. On ) |
|
| 2 | 0ellim | |- ( Lim B -> (/) e. B ) |
|
| 3 | 2 | adantl | |- ( ( B e. C /\ Lim B ) -> (/) e. B ) |
| 4 | oe0m1 | |- ( B e. On -> ( (/) e. B <-> ( (/) ^o B ) = (/) ) ) |
|
| 5 | 4 | biimpa | |- ( ( B e. On /\ (/) e. B ) -> ( (/) ^o B ) = (/) ) |
| 6 | 1 3 5 | syl2anc | |- ( ( B e. C /\ Lim B ) -> ( (/) ^o B ) = (/) ) |
| 7 | eldif | |- ( x e. ( B \ 1o ) <-> ( x e. B /\ -. x e. 1o ) ) |
|
| 8 | limord | |- ( Lim B -> Ord B ) |
|
| 9 | ordelon | |- ( ( Ord B /\ x e. B ) -> x e. On ) |
|
| 10 | 8 9 | sylan | |- ( ( Lim B /\ x e. B ) -> x e. On ) |
| 11 | on0eln0 | |- ( x e. On -> ( (/) e. x <-> x =/= (/) ) ) |
|
| 12 | el1o | |- ( x e. 1o <-> x = (/) ) |
|
| 13 | 12 | necon3bbii | |- ( -. x e. 1o <-> x =/= (/) ) |
| 14 | 11 13 | bitr4di | |- ( x e. On -> ( (/) e. x <-> -. x e. 1o ) ) |
| 15 | oe0m1 | |- ( x e. On -> ( (/) e. x <-> ( (/) ^o x ) = (/) ) ) |
|
| 16 | 15 | biimpd | |- ( x e. On -> ( (/) e. x -> ( (/) ^o x ) = (/) ) ) |
| 17 | 14 16 | sylbird | |- ( x e. On -> ( -. x e. 1o -> ( (/) ^o x ) = (/) ) ) |
| 18 | 10 17 | syl | |- ( ( Lim B /\ x e. B ) -> ( -. x e. 1o -> ( (/) ^o x ) = (/) ) ) |
| 19 | 18 | impr | |- ( ( Lim B /\ ( x e. B /\ -. x e. 1o ) ) -> ( (/) ^o x ) = (/) ) |
| 20 | 7 19 | sylan2b | |- ( ( Lim B /\ x e. ( B \ 1o ) ) -> ( (/) ^o x ) = (/) ) |
| 21 | 20 | iuneq2dv | |- ( Lim B -> U_ x e. ( B \ 1o ) ( (/) ^o x ) = U_ x e. ( B \ 1o ) (/) ) |
| 22 | df-1o | |- 1o = suc (/) |
|
| 23 | limsuc | |- ( Lim B -> ( (/) e. B <-> suc (/) e. B ) ) |
|
| 24 | 2 23 | mpbid | |- ( Lim B -> suc (/) e. B ) |
| 25 | 22 24 | eqeltrid | |- ( Lim B -> 1o e. B ) |
| 26 | 1on | |- 1o e. On |
|
| 27 | 26 | onirri | |- -. 1o e. 1o |
| 28 | eldif | |- ( 1o e. ( B \ 1o ) <-> ( 1o e. B /\ -. 1o e. 1o ) ) |
|
| 29 | 25 27 28 | sylanblrc | |- ( Lim B -> 1o e. ( B \ 1o ) ) |
| 30 | ne0i | |- ( 1o e. ( B \ 1o ) -> ( B \ 1o ) =/= (/) ) |
|
| 31 | iunconst | |- ( ( B \ 1o ) =/= (/) -> U_ x e. ( B \ 1o ) (/) = (/) ) |
|
| 32 | 29 30 31 | 3syl | |- ( Lim B -> U_ x e. ( B \ 1o ) (/) = (/) ) |
| 33 | 21 32 | eqtrd | |- ( Lim B -> U_ x e. ( B \ 1o ) ( (/) ^o x ) = (/) ) |
| 34 | 33 | adantl | |- ( ( B e. C /\ Lim B ) -> U_ x e. ( B \ 1o ) ( (/) ^o x ) = (/) ) |
| 35 | 6 34 | eqtr4d | |- ( ( B e. C /\ Lim B ) -> ( (/) ^o B ) = U_ x e. ( B \ 1o ) ( (/) ^o x ) ) |
| 36 | oveq1 | |- ( A = (/) -> ( A ^o B ) = ( (/) ^o B ) ) |
|
| 37 | oveq1 | |- ( A = (/) -> ( A ^o x ) = ( (/) ^o x ) ) |
|
| 38 | 37 | iuneq2d | |- ( A = (/) -> U_ x e. ( B \ 1o ) ( A ^o x ) = U_ x e. ( B \ 1o ) ( (/) ^o x ) ) |
| 39 | 36 38 | eqeq12d | |- ( A = (/) -> ( ( A ^o B ) = U_ x e. ( B \ 1o ) ( A ^o x ) <-> ( (/) ^o B ) = U_ x e. ( B \ 1o ) ( (/) ^o x ) ) ) |
| 40 | 35 39 | imbitrrid | |- ( A = (/) -> ( ( B e. C /\ Lim B ) -> ( A ^o B ) = U_ x e. ( B \ 1o ) ( A ^o x ) ) ) |
| 41 | 40 | impcom | |- ( ( ( B e. C /\ Lim B ) /\ A = (/) ) -> ( A ^o B ) = U_ x e. ( B \ 1o ) ( A ^o x ) ) |
| 42 | oelim | |- ( ( ( A e. On /\ ( B e. C /\ Lim B ) ) /\ (/) e. A ) -> ( A ^o B ) = U_ y e. B ( A ^o y ) ) |
|
| 43 | limsuc | |- ( Lim B -> ( y e. B <-> suc y e. B ) ) |
|
| 44 | 43 | biimpa | |- ( ( Lim B /\ y e. B ) -> suc y e. B ) |
| 45 | nsuceq0 | |- suc y =/= (/) |
|
| 46 | dif1o | |- ( suc y e. ( B \ 1o ) <-> ( suc y e. B /\ suc y =/= (/) ) ) |
|
| 47 | 44 45 46 | sylanblrc | |- ( ( Lim B /\ y e. B ) -> suc y e. ( B \ 1o ) ) |
| 48 | 47 | ex | |- ( Lim B -> ( y e. B -> suc y e. ( B \ 1o ) ) ) |
| 49 | 48 | ad2antlr | |- ( ( ( A e. On /\ Lim B ) /\ (/) e. A ) -> ( y e. B -> suc y e. ( B \ 1o ) ) ) |
| 50 | sssucid | |- y C_ suc y |
|
| 51 | ordelon | |- ( ( Ord B /\ y e. B ) -> y e. On ) |
|
| 52 | 8 51 | sylan | |- ( ( Lim B /\ y e. B ) -> y e. On ) |
| 53 | onsuc | |- ( y e. On -> suc y e. On ) |
|
| 54 | 52 53 | jccir | |- ( ( Lim B /\ y e. B ) -> ( y e. On /\ suc y e. On ) ) |
| 55 | id | |- ( ( y e. On /\ suc y e. On /\ A e. On ) -> ( y e. On /\ suc y e. On /\ A e. On ) ) |
|
| 56 | 55 | 3expa | |- ( ( ( y e. On /\ suc y e. On ) /\ A e. On ) -> ( y e. On /\ suc y e. On /\ A e. On ) ) |
| 57 | 56 | ancoms | |- ( ( A e. On /\ ( y e. On /\ suc y e. On ) ) -> ( y e. On /\ suc y e. On /\ A e. On ) ) |
| 58 | 54 57 | sylan2 | |- ( ( A e. On /\ ( Lim B /\ y e. B ) ) -> ( y e. On /\ suc y e. On /\ A e. On ) ) |
| 59 | 58 | anassrs | |- ( ( ( A e. On /\ Lim B ) /\ y e. B ) -> ( y e. On /\ suc y e. On /\ A e. On ) ) |
| 60 | oewordi | |- ( ( ( y e. On /\ suc y e. On /\ A e. On ) /\ (/) e. A ) -> ( y C_ suc y -> ( A ^o y ) C_ ( A ^o suc y ) ) ) |
|
| 61 | 59 60 | sylan | |- ( ( ( ( A e. On /\ Lim B ) /\ y e. B ) /\ (/) e. A ) -> ( y C_ suc y -> ( A ^o y ) C_ ( A ^o suc y ) ) ) |
| 62 | 61 | an32s | |- ( ( ( ( A e. On /\ Lim B ) /\ (/) e. A ) /\ y e. B ) -> ( y C_ suc y -> ( A ^o y ) C_ ( A ^o suc y ) ) ) |
| 63 | 50 62 | mpi | |- ( ( ( ( A e. On /\ Lim B ) /\ (/) e. A ) /\ y e. B ) -> ( A ^o y ) C_ ( A ^o suc y ) ) |
| 64 | 63 | ex | |- ( ( ( A e. On /\ Lim B ) /\ (/) e. A ) -> ( y e. B -> ( A ^o y ) C_ ( A ^o suc y ) ) ) |
| 65 | 49 64 | jcad | |- ( ( ( A e. On /\ Lim B ) /\ (/) e. A ) -> ( y e. B -> ( suc y e. ( B \ 1o ) /\ ( A ^o y ) C_ ( A ^o suc y ) ) ) ) |
| 66 | oveq2 | |- ( x = suc y -> ( A ^o x ) = ( A ^o suc y ) ) |
|
| 67 | 66 | sseq2d | |- ( x = suc y -> ( ( A ^o y ) C_ ( A ^o x ) <-> ( A ^o y ) C_ ( A ^o suc y ) ) ) |
| 68 | 67 | rspcev | |- ( ( suc y e. ( B \ 1o ) /\ ( A ^o y ) C_ ( A ^o suc y ) ) -> E. x e. ( B \ 1o ) ( A ^o y ) C_ ( A ^o x ) ) |
| 69 | 65 68 | syl6 | |- ( ( ( A e. On /\ Lim B ) /\ (/) e. A ) -> ( y e. B -> E. x e. ( B \ 1o ) ( A ^o y ) C_ ( A ^o x ) ) ) |
| 70 | 69 | ralrimiv | |- ( ( ( A e. On /\ Lim B ) /\ (/) e. A ) -> A. y e. B E. x e. ( B \ 1o ) ( A ^o y ) C_ ( A ^o x ) ) |
| 71 | iunss2 | |- ( A. y e. B E. x e. ( B \ 1o ) ( A ^o y ) C_ ( A ^o x ) -> U_ y e. B ( A ^o y ) C_ U_ x e. ( B \ 1o ) ( A ^o x ) ) |
|
| 72 | 70 71 | syl | |- ( ( ( A e. On /\ Lim B ) /\ (/) e. A ) -> U_ y e. B ( A ^o y ) C_ U_ x e. ( B \ 1o ) ( A ^o x ) ) |
| 73 | difss | |- ( B \ 1o ) C_ B |
|
| 74 | iunss1 | |- ( ( B \ 1o ) C_ B -> U_ x e. ( B \ 1o ) ( A ^o x ) C_ U_ x e. B ( A ^o x ) ) |
|
| 75 | 73 74 | ax-mp | |- U_ x e. ( B \ 1o ) ( A ^o x ) C_ U_ x e. B ( A ^o x ) |
| 76 | oveq2 | |- ( x = y -> ( A ^o x ) = ( A ^o y ) ) |
|
| 77 | 76 | cbviunv | |- U_ x e. B ( A ^o x ) = U_ y e. B ( A ^o y ) |
| 78 | 75 77 | sseqtri | |- U_ x e. ( B \ 1o ) ( A ^o x ) C_ U_ y e. B ( A ^o y ) |
| 79 | 78 | a1i | |- ( ( ( A e. On /\ Lim B ) /\ (/) e. A ) -> U_ x e. ( B \ 1o ) ( A ^o x ) C_ U_ y e. B ( A ^o y ) ) |
| 80 | 72 79 | eqssd | |- ( ( ( A e. On /\ Lim B ) /\ (/) e. A ) -> U_ y e. B ( A ^o y ) = U_ x e. ( B \ 1o ) ( A ^o x ) ) |
| 81 | 80 | adantlrl | |- ( ( ( A e. On /\ ( B e. C /\ Lim B ) ) /\ (/) e. A ) -> U_ y e. B ( A ^o y ) = U_ x e. ( B \ 1o ) ( A ^o x ) ) |
| 82 | 42 81 | eqtrd | |- ( ( ( A e. On /\ ( B e. C /\ Lim B ) ) /\ (/) e. A ) -> ( A ^o B ) = U_ x e. ( B \ 1o ) ( A ^o x ) ) |
| 83 | 41 82 | oe0lem | |- ( ( A e. On /\ ( B e. C /\ Lim B ) ) -> ( A ^o B ) = U_ x e. ( B \ 1o ) ( A ^o x ) ) |