This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a nonzero multiple of an element is zero, the element has positive order. (Contributed by Stefan O'Rear, 5-Sep-2015) (Revised by Mario Carneiro, 22-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odcl.1 | |- X = ( Base ` G ) |
|
| odcl.2 | |- O = ( od ` G ) |
||
| odid.3 | |- .x. = ( .g ` G ) |
||
| odid.4 | |- .0. = ( 0g ` G ) |
||
| Assertion | odnncl | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( O ` A ) e. NN ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odcl.1 | |- X = ( Base ` G ) |
|
| 2 | odcl.2 | |- O = ( od ` G ) |
|
| 3 | odid.3 | |- .x. = ( .g ` G ) |
|
| 4 | odid.4 | |- .0. = ( 0g ` G ) |
|
| 5 | simpl2 | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> A e. X ) |
|
| 6 | simprl | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> N =/= 0 ) |
|
| 7 | simpl3 | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> N e. ZZ ) |
|
| 8 | 7 | zcnd | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> N e. CC ) |
| 9 | abs00 | |- ( N e. CC -> ( ( abs ` N ) = 0 <-> N = 0 ) ) |
|
| 10 | 9 | necon3bbid | |- ( N e. CC -> ( -. ( abs ` N ) = 0 <-> N =/= 0 ) ) |
| 11 | 8 10 | syl | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( -. ( abs ` N ) = 0 <-> N =/= 0 ) ) |
| 12 | 6 11 | mpbird | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> -. ( abs ` N ) = 0 ) |
| 13 | nn0abscl | |- ( N e. ZZ -> ( abs ` N ) e. NN0 ) |
|
| 14 | 7 13 | syl | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( abs ` N ) e. NN0 ) |
| 15 | elnn0 | |- ( ( abs ` N ) e. NN0 <-> ( ( abs ` N ) e. NN \/ ( abs ` N ) = 0 ) ) |
|
| 16 | 14 15 | sylib | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( ( abs ` N ) e. NN \/ ( abs ` N ) = 0 ) ) |
| 17 | 16 | ord | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( -. ( abs ` N ) e. NN -> ( abs ` N ) = 0 ) ) |
| 18 | 12 17 | mt3d | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( abs ` N ) e. NN ) |
| 19 | simprr | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( N .x. A ) = .0. ) |
|
| 20 | oveq1 | |- ( ( abs ` N ) = N -> ( ( abs ` N ) .x. A ) = ( N .x. A ) ) |
|
| 21 | 20 | eqeq1d | |- ( ( abs ` N ) = N -> ( ( ( abs ` N ) .x. A ) = .0. <-> ( N .x. A ) = .0. ) ) |
| 22 | 19 21 | syl5ibrcom | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( ( abs ` N ) = N -> ( ( abs ` N ) .x. A ) = .0. ) ) |
| 23 | simpl1 | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> G e. Grp ) |
|
| 24 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 25 | 1 3 24 | mulgneg | |- ( ( G e. Grp /\ N e. ZZ /\ A e. X ) -> ( -u N .x. A ) = ( ( invg ` G ) ` ( N .x. A ) ) ) |
| 26 | 23 7 5 25 | syl3anc | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( -u N .x. A ) = ( ( invg ` G ) ` ( N .x. A ) ) ) |
| 27 | 19 | fveq2d | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( ( invg ` G ) ` ( N .x. A ) ) = ( ( invg ` G ) ` .0. ) ) |
| 28 | 4 24 | grpinvid | |- ( G e. Grp -> ( ( invg ` G ) ` .0. ) = .0. ) |
| 29 | 23 28 | syl | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( ( invg ` G ) ` .0. ) = .0. ) |
| 30 | 26 27 29 | 3eqtrd | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( -u N .x. A ) = .0. ) |
| 31 | oveq1 | |- ( ( abs ` N ) = -u N -> ( ( abs ` N ) .x. A ) = ( -u N .x. A ) ) |
|
| 32 | 31 | eqeq1d | |- ( ( abs ` N ) = -u N -> ( ( ( abs ` N ) .x. A ) = .0. <-> ( -u N .x. A ) = .0. ) ) |
| 33 | 30 32 | syl5ibrcom | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( ( abs ` N ) = -u N -> ( ( abs ` N ) .x. A ) = .0. ) ) |
| 34 | 7 | zred | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> N e. RR ) |
| 35 | 34 | absord | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( ( abs ` N ) = N \/ ( abs ` N ) = -u N ) ) |
| 36 | 22 33 35 | mpjaod | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( ( abs ` N ) .x. A ) = .0. ) |
| 37 | 1 2 3 4 | odlem2 | |- ( ( A e. X /\ ( abs ` N ) e. NN /\ ( ( abs ` N ) .x. A ) = .0. ) -> ( O ` A ) e. ( 1 ... ( abs ` N ) ) ) |
| 38 | 5 18 36 37 | syl3anc | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( O ` A ) e. ( 1 ... ( abs ` N ) ) ) |
| 39 | elfznn | |- ( ( O ` A ) e. ( 1 ... ( abs ` N ) ) -> ( O ` A ) e. NN ) |
|
| 40 | 38 39 | syl | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( O ` A ) e. NN ) |