This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reduce the argument of a group multiple by modding out the order of the element. (Contributed by Mario Carneiro, 14-Jan-2015) (Revised by Mario Carneiro, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odcl.1 | |- X = ( Base ` G ) |
|
| odcl.2 | |- O = ( od ` G ) |
||
| odid.3 | |- .x. = ( .g ` G ) |
||
| odid.4 | |- .0. = ( 0g ` G ) |
||
| Assertion | odmod | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( N mod ( O ` A ) ) .x. A ) = ( N .x. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odcl.1 | |- X = ( Base ` G ) |
|
| 2 | odcl.2 | |- O = ( od ` G ) |
|
| 3 | odid.3 | |- .x. = ( .g ` G ) |
|
| 4 | odid.4 | |- .0. = ( 0g ` G ) |
|
| 5 | simpl3 | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> N e. ZZ ) |
|
| 6 | 5 | zred | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> N e. RR ) |
| 7 | simpr | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( O ` A ) e. NN ) |
|
| 8 | 7 | nnrpd | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( O ` A ) e. RR+ ) |
| 9 | modval | |- ( ( N e. RR /\ ( O ` A ) e. RR+ ) -> ( N mod ( O ` A ) ) = ( N - ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) ) ) |
|
| 10 | 6 8 9 | syl2anc | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( N mod ( O ` A ) ) = ( N - ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) ) ) |
| 11 | 10 | oveq1d | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( N mod ( O ` A ) ) .x. A ) = ( ( N - ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) ) .x. A ) ) |
| 12 | simpl1 | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> G e. Grp ) |
|
| 13 | 7 | nnzd | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( O ` A ) e. ZZ ) |
| 14 | 6 7 | nndivred | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( N / ( O ` A ) ) e. RR ) |
| 15 | 14 | flcld | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( |_ ` ( N / ( O ` A ) ) ) e. ZZ ) |
| 16 | 13 15 | zmulcld | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) e. ZZ ) |
| 17 | simpl2 | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> A e. X ) |
|
| 18 | eqid | |- ( -g ` G ) = ( -g ` G ) |
|
| 19 | 1 3 18 | mulgsubdir | |- ( ( G e. Grp /\ ( N e. ZZ /\ ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) e. ZZ /\ A e. X ) ) -> ( ( N - ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) ) .x. A ) = ( ( N .x. A ) ( -g ` G ) ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) .x. A ) ) ) |
| 20 | 12 5 16 17 19 | syl13anc | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( N - ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) ) .x. A ) = ( ( N .x. A ) ( -g ` G ) ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) .x. A ) ) ) |
| 21 | nncn | |- ( ( O ` A ) e. NN -> ( O ` A ) e. CC ) |
|
| 22 | zcn | |- ( ( |_ ` ( N / ( O ` A ) ) ) e. ZZ -> ( |_ ` ( N / ( O ` A ) ) ) e. CC ) |
|
| 23 | mulcom | |- ( ( ( O ` A ) e. CC /\ ( |_ ` ( N / ( O ` A ) ) ) e. CC ) -> ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) = ( ( |_ ` ( N / ( O ` A ) ) ) x. ( O ` A ) ) ) |
|
| 24 | 21 22 23 | syl2an | |- ( ( ( O ` A ) e. NN /\ ( |_ ` ( N / ( O ` A ) ) ) e. ZZ ) -> ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) = ( ( |_ ` ( N / ( O ` A ) ) ) x. ( O ` A ) ) ) |
| 25 | 7 15 24 | syl2anc | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) = ( ( |_ ` ( N / ( O ` A ) ) ) x. ( O ` A ) ) ) |
| 26 | 25 | oveq1d | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) .x. A ) = ( ( ( |_ ` ( N / ( O ` A ) ) ) x. ( O ` A ) ) .x. A ) ) |
| 27 | 1 3 | mulgass | |- ( ( G e. Grp /\ ( ( |_ ` ( N / ( O ` A ) ) ) e. ZZ /\ ( O ` A ) e. ZZ /\ A e. X ) ) -> ( ( ( |_ ` ( N / ( O ` A ) ) ) x. ( O ` A ) ) .x. A ) = ( ( |_ ` ( N / ( O ` A ) ) ) .x. ( ( O ` A ) .x. A ) ) ) |
| 28 | 12 15 13 17 27 | syl13anc | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( ( |_ ` ( N / ( O ` A ) ) ) x. ( O ` A ) ) .x. A ) = ( ( |_ ` ( N / ( O ` A ) ) ) .x. ( ( O ` A ) .x. A ) ) ) |
| 29 | 1 2 3 4 | odid | |- ( A e. X -> ( ( O ` A ) .x. A ) = .0. ) |
| 30 | 17 29 | syl | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( O ` A ) .x. A ) = .0. ) |
| 31 | 30 | oveq2d | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( |_ ` ( N / ( O ` A ) ) ) .x. ( ( O ` A ) .x. A ) ) = ( ( |_ ` ( N / ( O ` A ) ) ) .x. .0. ) ) |
| 32 | 1 3 4 | mulgz | |- ( ( G e. Grp /\ ( |_ ` ( N / ( O ` A ) ) ) e. ZZ ) -> ( ( |_ ` ( N / ( O ` A ) ) ) .x. .0. ) = .0. ) |
| 33 | 12 15 32 | syl2anc | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( |_ ` ( N / ( O ` A ) ) ) .x. .0. ) = .0. ) |
| 34 | 31 33 | eqtrd | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( |_ ` ( N / ( O ` A ) ) ) .x. ( ( O ` A ) .x. A ) ) = .0. ) |
| 35 | 26 28 34 | 3eqtrd | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) .x. A ) = .0. ) |
| 36 | 35 | oveq2d | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( N .x. A ) ( -g ` G ) ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) .x. A ) ) = ( ( N .x. A ) ( -g ` G ) .0. ) ) |
| 37 | 1 3 | mulgcl | |- ( ( G e. Grp /\ N e. ZZ /\ A e. X ) -> ( N .x. A ) e. X ) |
| 38 | 12 5 17 37 | syl3anc | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( N .x. A ) e. X ) |
| 39 | 1 4 18 | grpsubid1 | |- ( ( G e. Grp /\ ( N .x. A ) e. X ) -> ( ( N .x. A ) ( -g ` G ) .0. ) = ( N .x. A ) ) |
| 40 | 12 38 39 | syl2anc | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( N .x. A ) ( -g ` G ) .0. ) = ( N .x. A ) ) |
| 41 | 36 40 | eqtrd | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( N .x. A ) ( -g ` G ) ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) .x. A ) ) = ( N .x. A ) ) |
| 42 | 11 20 41 | 3eqtrd | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( N mod ( O ` A ) ) .x. A ) = ( N .x. A ) ) |