This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element of zero order generates an infinite subgroup. (Contributed by Stefan O'Rear, 12-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odhash.x | |- X = ( Base ` G ) |
|
| odhash.o | |- O = ( od ` G ) |
||
| odhash.k | |- K = ( mrCls ` ( SubGrp ` G ) ) |
||
| Assertion | odhash | |- ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> ( # ` ( K ` { A } ) ) = +oo ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odhash.x | |- X = ( Base ` G ) |
|
| 2 | odhash.o | |- O = ( od ` G ) |
|
| 3 | odhash.k | |- K = ( mrCls ` ( SubGrp ` G ) ) |
|
| 4 | eqid | |- ( .g ` G ) = ( .g ` G ) |
|
| 5 | 1 4 2 3 | odf1o1 | |- ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> ( x e. ZZ |-> ( x ( .g ` G ) A ) ) : ZZ -1-1-onto-> ( K ` { A } ) ) |
| 6 | zex | |- ZZ e. _V |
|
| 7 | 6 | f1oen | |- ( ( x e. ZZ |-> ( x ( .g ` G ) A ) ) : ZZ -1-1-onto-> ( K ` { A } ) -> ZZ ~~ ( K ` { A } ) ) |
| 8 | hasheni | |- ( ZZ ~~ ( K ` { A } ) -> ( # ` ZZ ) = ( # ` ( K ` { A } ) ) ) |
|
| 9 | 5 7 8 | 3syl | |- ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> ( # ` ZZ ) = ( # ` ( K ` { A } ) ) ) |
| 10 | ominf | |- -. _om e. Fin |
|
| 11 | znnen | |- ZZ ~~ NN |
|
| 12 | nnenom | |- NN ~~ _om |
|
| 13 | 11 12 | entri | |- ZZ ~~ _om |
| 14 | enfi | |- ( ZZ ~~ _om -> ( ZZ e. Fin <-> _om e. Fin ) ) |
|
| 15 | 13 14 | ax-mp | |- ( ZZ e. Fin <-> _om e. Fin ) |
| 16 | 10 15 | mtbir | |- -. ZZ e. Fin |
| 17 | hashinf | |- ( ( ZZ e. _V /\ -. ZZ e. Fin ) -> ( # ` ZZ ) = +oo ) |
|
| 18 | 6 16 17 | mp2an | |- ( # ` ZZ ) = +oo |
| 19 | 9 18 | eqtr3di | |- ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> ( # ` ( K ` { A } ) ) = +oo ) |