This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The multiples of an element with infinite order form an infinite cyclic subgroup of G . (Contributed by Mario Carneiro, 14-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odf1.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| odf1.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | ||
| odf1.3 | ⊢ · = ( .g ‘ 𝐺 ) | ||
| odf1.4 | ⊢ 𝐹 = ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) | ||
| Assertion | odinf | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ¬ ran 𝐹 ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odf1.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | odf1.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 3 | odf1.3 | ⊢ · = ( .g ‘ 𝐺 ) | |
| 4 | odf1.4 | ⊢ 𝐹 = ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) | |
| 5 | znnen | ⊢ ℤ ≈ ℕ | |
| 6 | nnenom | ⊢ ℕ ≈ ω | |
| 7 | 5 6 | entr2i | ⊢ ω ≈ ℤ |
| 8 | 1 2 3 4 | odf1 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑂 ‘ 𝐴 ) = 0 ↔ 𝐹 : ℤ –1-1→ 𝑋 ) ) |
| 9 | 8 | biimp3a | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → 𝐹 : ℤ –1-1→ 𝑋 ) |
| 10 | f1f | ⊢ ( 𝐹 : ℤ –1-1→ 𝑋 → 𝐹 : ℤ ⟶ 𝑋 ) | |
| 11 | zex | ⊢ ℤ ∈ V | |
| 12 | 1 | fvexi | ⊢ 𝑋 ∈ V |
| 13 | fex2 | ⊢ ( ( 𝐹 : ℤ ⟶ 𝑋 ∧ ℤ ∈ V ∧ 𝑋 ∈ V ) → 𝐹 ∈ V ) | |
| 14 | 11 12 13 | mp3an23 | ⊢ ( 𝐹 : ℤ ⟶ 𝑋 → 𝐹 ∈ V ) |
| 15 | 9 10 14 | 3syl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → 𝐹 ∈ V ) |
| 16 | f1f1orn | ⊢ ( 𝐹 : ℤ –1-1→ 𝑋 → 𝐹 : ℤ –1-1-onto→ ran 𝐹 ) | |
| 17 | 9 16 | syl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → 𝐹 : ℤ –1-1-onto→ ran 𝐹 ) |
| 18 | f1oen3g | ⊢ ( ( 𝐹 ∈ V ∧ 𝐹 : ℤ –1-1-onto→ ran 𝐹 ) → ℤ ≈ ran 𝐹 ) | |
| 19 | 15 17 18 | syl2anc | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ℤ ≈ ran 𝐹 ) |
| 20 | entr | ⊢ ( ( ω ≈ ℤ ∧ ℤ ≈ ran 𝐹 ) → ω ≈ ran 𝐹 ) | |
| 21 | 7 19 20 | sylancr | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ω ≈ ran 𝐹 ) |
| 22 | endom | ⊢ ( ω ≈ ran 𝐹 → ω ≼ ran 𝐹 ) | |
| 23 | domnsym | ⊢ ( ω ≼ ran 𝐹 → ¬ ran 𝐹 ≺ ω ) | |
| 24 | 21 22 23 | 3syl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ¬ ran 𝐹 ≺ ω ) |
| 25 | isfinite | ⊢ ( ran 𝐹 ∈ Fin ↔ ran 𝐹 ≺ ω ) | |
| 26 | 24 25 | sylnibr | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ¬ ran 𝐹 ∈ Fin ) |