This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer is odd iff its predecessor is even. (Contributed by Mario Carneiro, 5-Sep-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oddm1even | ⊢ ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ 𝑁 ↔ 2 ∥ ( 𝑁 − 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → 𝑁 ∈ ℤ ) | |
| 2 | 1 | zcnd | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → 𝑁 ∈ ℂ ) |
| 3 | 1cnd | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → 1 ∈ ℂ ) | |
| 4 | 2cnd | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → 2 ∈ ℂ ) | |
| 5 | simpr | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → 𝑛 ∈ ℤ ) | |
| 6 | 5 | zcnd | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → 𝑛 ∈ ℂ ) |
| 7 | 4 6 | mulcld | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 2 · 𝑛 ) ∈ ℂ ) |
| 8 | 2 3 7 | subadd2d | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( ( 𝑁 − 1 ) = ( 2 · 𝑛 ) ↔ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
| 9 | eqcom | ⊢ ( ( 𝑁 − 1 ) = ( 2 · 𝑛 ) ↔ ( 2 · 𝑛 ) = ( 𝑁 − 1 ) ) | |
| 10 | 4 6 | mulcomd | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 2 · 𝑛 ) = ( 𝑛 · 2 ) ) |
| 11 | 10 | eqeq1d | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( ( 2 · 𝑛 ) = ( 𝑁 − 1 ) ↔ ( 𝑛 · 2 ) = ( 𝑁 − 1 ) ) ) |
| 12 | 9 11 | bitrid | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( ( 𝑁 − 1 ) = ( 2 · 𝑛 ) ↔ ( 𝑛 · 2 ) = ( 𝑁 − 1 ) ) ) |
| 13 | 8 12 | bitr3d | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ↔ ( 𝑛 · 2 ) = ( 𝑁 − 1 ) ) ) |
| 14 | 13 | rexbidva | ⊢ ( 𝑁 ∈ ℤ → ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 · 2 ) = ( 𝑁 − 1 ) ) ) |
| 15 | odd2np1 | ⊢ ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) | |
| 16 | 2z | ⊢ 2 ∈ ℤ | |
| 17 | peano2zm | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 − 1 ) ∈ ℤ ) | |
| 18 | divides | ⊢ ( ( 2 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℤ ) → ( 2 ∥ ( 𝑁 − 1 ) ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 · 2 ) = ( 𝑁 − 1 ) ) ) | |
| 19 | 16 17 18 | sylancr | ⊢ ( 𝑁 ∈ ℤ → ( 2 ∥ ( 𝑁 − 1 ) ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 · 2 ) = ( 𝑁 − 1 ) ) ) |
| 20 | 14 15 19 | 3bitr4d | ⊢ ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ 𝑁 ↔ 2 ∥ ( 𝑁 − 1 ) ) ) |