This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer is odd iff its predecessor is even. (Contributed by Mario Carneiro, 5-Sep-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oddm1even | |- ( N e. ZZ -> ( -. 2 || N <-> 2 || ( N - 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( N e. ZZ /\ n e. ZZ ) -> N e. ZZ ) |
|
| 2 | 1 | zcnd | |- ( ( N e. ZZ /\ n e. ZZ ) -> N e. CC ) |
| 3 | 1cnd | |- ( ( N e. ZZ /\ n e. ZZ ) -> 1 e. CC ) |
|
| 4 | 2cnd | |- ( ( N e. ZZ /\ n e. ZZ ) -> 2 e. CC ) |
|
| 5 | simpr | |- ( ( N e. ZZ /\ n e. ZZ ) -> n e. ZZ ) |
|
| 6 | 5 | zcnd | |- ( ( N e. ZZ /\ n e. ZZ ) -> n e. CC ) |
| 7 | 4 6 | mulcld | |- ( ( N e. ZZ /\ n e. ZZ ) -> ( 2 x. n ) e. CC ) |
| 8 | 2 3 7 | subadd2d | |- ( ( N e. ZZ /\ n e. ZZ ) -> ( ( N - 1 ) = ( 2 x. n ) <-> ( ( 2 x. n ) + 1 ) = N ) ) |
| 9 | eqcom | |- ( ( N - 1 ) = ( 2 x. n ) <-> ( 2 x. n ) = ( N - 1 ) ) |
|
| 10 | 4 6 | mulcomd | |- ( ( N e. ZZ /\ n e. ZZ ) -> ( 2 x. n ) = ( n x. 2 ) ) |
| 11 | 10 | eqeq1d | |- ( ( N e. ZZ /\ n e. ZZ ) -> ( ( 2 x. n ) = ( N - 1 ) <-> ( n x. 2 ) = ( N - 1 ) ) ) |
| 12 | 9 11 | bitrid | |- ( ( N e. ZZ /\ n e. ZZ ) -> ( ( N - 1 ) = ( 2 x. n ) <-> ( n x. 2 ) = ( N - 1 ) ) ) |
| 13 | 8 12 | bitr3d | |- ( ( N e. ZZ /\ n e. ZZ ) -> ( ( ( 2 x. n ) + 1 ) = N <-> ( n x. 2 ) = ( N - 1 ) ) ) |
| 14 | 13 | rexbidva | |- ( N e. ZZ -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N <-> E. n e. ZZ ( n x. 2 ) = ( N - 1 ) ) ) |
| 15 | odd2np1 | |- ( N e. ZZ -> ( -. 2 || N <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
|
| 16 | 2z | |- 2 e. ZZ |
|
| 17 | peano2zm | |- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
|
| 18 | divides | |- ( ( 2 e. ZZ /\ ( N - 1 ) e. ZZ ) -> ( 2 || ( N - 1 ) <-> E. n e. ZZ ( n x. 2 ) = ( N - 1 ) ) ) |
|
| 19 | 16 17 18 | sylancr | |- ( N e. ZZ -> ( 2 || ( N - 1 ) <-> E. n e. ZZ ( n x. 2 ) = ( N - 1 ) ) ) |
| 20 | 14 15 19 | 3bitr4d | |- ( N e. ZZ -> ( -. 2 || N <-> 2 || ( N - 1 ) ) ) |