This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The orthocomplement of a linear span. (Contributed by Mario Carneiro, 23-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ocvlsp.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| ocvlsp.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | ||
| ocvlsp.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| Assertion | ocvlsp | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( ⊥ ‘ ( 𝑁 ‘ 𝑆 ) ) = ( ⊥ ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocvlsp.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | ocvlsp.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | |
| 3 | ocvlsp.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 4 | phllmod | ⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) | |
| 5 | 1 3 | lspssid | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑆 ⊆ 𝑉 ) → 𝑆 ⊆ ( 𝑁 ‘ 𝑆 ) ) |
| 6 | 4 5 | sylan | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → 𝑆 ⊆ ( 𝑁 ‘ 𝑆 ) ) |
| 7 | 2 | ocv2ss | ⊢ ( 𝑆 ⊆ ( 𝑁 ‘ 𝑆 ) → ( ⊥ ‘ ( 𝑁 ‘ 𝑆 ) ) ⊆ ( ⊥ ‘ 𝑆 ) ) |
| 8 | 6 7 | syl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( ⊥ ‘ ( 𝑁 ‘ 𝑆 ) ) ⊆ ( ⊥ ‘ 𝑆 ) ) |
| 9 | 1 2 | ocvss | ⊢ ( ⊥ ‘ 𝑆 ) ⊆ 𝑉 |
| 10 | 9 | a1i | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑆 ) ⊆ 𝑉 ) |
| 11 | 1 2 | ocvocv | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( ⊥ ‘ 𝑆 ) ⊆ 𝑉 ) → ( ⊥ ‘ 𝑆 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) ) |
| 12 | 10 11 | syldan | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑆 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) ) |
| 13 | 4 | adantr | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → 𝑊 ∈ LMod ) |
| 14 | eqid | ⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) | |
| 15 | 1 2 14 | ocvlss | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( ⊥ ‘ 𝑆 ) ⊆ 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 16 | 10 15 | syldan | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 17 | 1 2 | ocvocv | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → 𝑆 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) |
| 18 | 14 3 | lspssp | ⊢ ( ( 𝑊 ∈ LMod ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑆 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) → ( 𝑁 ‘ 𝑆 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) |
| 19 | 13 16 17 18 | syl3anc | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( 𝑁 ‘ 𝑆 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) |
| 20 | 2 | ocv2ss | ⊢ ( ( 𝑁 ‘ 𝑆 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) ⊆ ( ⊥ ‘ ( 𝑁 ‘ 𝑆 ) ) ) |
| 21 | 19 20 | syl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) ⊆ ( ⊥ ‘ ( 𝑁 ‘ 𝑆 ) ) ) |
| 22 | 12 21 | sstrd | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑆 ) ⊆ ( ⊥ ‘ ( 𝑁 ‘ 𝑆 ) ) ) |
| 23 | 8 22 | eqssd | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( ⊥ ‘ ( 𝑁 ‘ 𝑆 ) ) = ( ⊥ ‘ 𝑆 ) ) |