This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The orthocomplement of the empty set. (Contributed by Mario Carneiro, 23-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ocvz.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| ocvz.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | ||
| Assertion | ocv0 | ⊢ ( ⊥ ‘ ∅ ) = 𝑉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocvz.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | ocvz.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | |
| 3 | 0ss | ⊢ ∅ ⊆ 𝑉 | |
| 4 | eqid | ⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) | |
| 5 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 6 | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | |
| 7 | 1 4 5 6 2 | ocvval | ⊢ ( ∅ ⊆ 𝑉 → ( ⊥ ‘ ∅ ) = { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ ∅ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) |
| 8 | 3 7 | ax-mp | ⊢ ( ⊥ ‘ ∅ ) = { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ ∅ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } |
| 9 | ral0 | ⊢ ∀ 𝑦 ∈ ∅ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | |
| 10 | 9 | rgenw | ⊢ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ ∅ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
| 11 | rabid2 | ⊢ ( 𝑉 = { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ ∅ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ↔ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ ∅ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | |
| 12 | 10 11 | mpbir | ⊢ 𝑉 = { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ ∅ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } |
| 13 | 8 12 | eqtr4i | ⊢ ( ⊥ ‘ ∅ ) = 𝑉 |