This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The orthocomplement of a linear span. (Contributed by Mario Carneiro, 23-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ocvlsp.v | |- V = ( Base ` W ) |
|
| ocvlsp.o | |- ._|_ = ( ocv ` W ) |
||
| ocvlsp.n | |- N = ( LSpan ` W ) |
||
| Assertion | ocvlsp | |- ( ( W e. PreHil /\ S C_ V ) -> ( ._|_ ` ( N ` S ) ) = ( ._|_ ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocvlsp.v | |- V = ( Base ` W ) |
|
| 2 | ocvlsp.o | |- ._|_ = ( ocv ` W ) |
|
| 3 | ocvlsp.n | |- N = ( LSpan ` W ) |
|
| 4 | phllmod | |- ( W e. PreHil -> W e. LMod ) |
|
| 5 | 1 3 | lspssid | |- ( ( W e. LMod /\ S C_ V ) -> S C_ ( N ` S ) ) |
| 6 | 4 5 | sylan | |- ( ( W e. PreHil /\ S C_ V ) -> S C_ ( N ` S ) ) |
| 7 | 2 | ocv2ss | |- ( S C_ ( N ` S ) -> ( ._|_ ` ( N ` S ) ) C_ ( ._|_ ` S ) ) |
| 8 | 6 7 | syl | |- ( ( W e. PreHil /\ S C_ V ) -> ( ._|_ ` ( N ` S ) ) C_ ( ._|_ ` S ) ) |
| 9 | 1 2 | ocvss | |- ( ._|_ ` S ) C_ V |
| 10 | 9 | a1i | |- ( ( W e. PreHil /\ S C_ V ) -> ( ._|_ ` S ) C_ V ) |
| 11 | 1 2 | ocvocv | |- ( ( W e. PreHil /\ ( ._|_ ` S ) C_ V ) -> ( ._|_ ` S ) C_ ( ._|_ ` ( ._|_ ` ( ._|_ ` S ) ) ) ) |
| 12 | 10 11 | syldan | |- ( ( W e. PreHil /\ S C_ V ) -> ( ._|_ ` S ) C_ ( ._|_ ` ( ._|_ ` ( ._|_ ` S ) ) ) ) |
| 13 | 4 | adantr | |- ( ( W e. PreHil /\ S C_ V ) -> W e. LMod ) |
| 14 | eqid | |- ( LSubSp ` W ) = ( LSubSp ` W ) |
|
| 15 | 1 2 14 | ocvlss | |- ( ( W e. PreHil /\ ( ._|_ ` S ) C_ V ) -> ( ._|_ ` ( ._|_ ` S ) ) e. ( LSubSp ` W ) ) |
| 16 | 10 15 | syldan | |- ( ( W e. PreHil /\ S C_ V ) -> ( ._|_ ` ( ._|_ ` S ) ) e. ( LSubSp ` W ) ) |
| 17 | 1 2 | ocvocv | |- ( ( W e. PreHil /\ S C_ V ) -> S C_ ( ._|_ ` ( ._|_ ` S ) ) ) |
| 18 | 14 3 | lspssp | |- ( ( W e. LMod /\ ( ._|_ ` ( ._|_ ` S ) ) e. ( LSubSp ` W ) /\ S C_ ( ._|_ ` ( ._|_ ` S ) ) ) -> ( N ` S ) C_ ( ._|_ ` ( ._|_ ` S ) ) ) |
| 19 | 13 16 17 18 | syl3anc | |- ( ( W e. PreHil /\ S C_ V ) -> ( N ` S ) C_ ( ._|_ ` ( ._|_ ` S ) ) ) |
| 20 | 2 | ocv2ss | |- ( ( N ` S ) C_ ( ._|_ ` ( ._|_ ` S ) ) -> ( ._|_ ` ( ._|_ ` ( ._|_ ` S ) ) ) C_ ( ._|_ ` ( N ` S ) ) ) |
| 21 | 19 20 | syl | |- ( ( W e. PreHil /\ S C_ V ) -> ( ._|_ ` ( ._|_ ` ( ._|_ ` S ) ) ) C_ ( ._|_ ` ( N ` S ) ) ) |
| 22 | 12 21 | sstrd | |- ( ( W e. PreHil /\ S C_ V ) -> ( ._|_ ` S ) C_ ( ._|_ ` ( N ` S ) ) ) |
| 23 | 8 22 | eqssd | |- ( ( W e. PreHil /\ S C_ V ) -> ( ._|_ ` ( N ` S ) ) = ( ._|_ ` S ) ) |