This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set is contained in its double orthocomplement. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ocvss.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| ocvss.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | ||
| Assertion | ocvocv | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → 𝑆 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocvss.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | ocvss.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | |
| 3 | 1 2 | ocvss | ⊢ ( ⊥ ‘ 𝑆 ) ⊆ 𝑉 |
| 4 | 3 | a1i | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ 𝑆 ) → ( ⊥ ‘ 𝑆 ) ⊆ 𝑉 ) |
| 5 | simpr | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → 𝑆 ⊆ 𝑉 ) | |
| 6 | 5 | sselda | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝑉 ) |
| 7 | eqid | ⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) | |
| 8 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 9 | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | |
| 10 | 1 7 8 9 2 | ocvi | ⊢ ( ( 𝑦 ∈ ( ⊥ ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 11 | 10 | ancoms | ⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( ⊥ ‘ 𝑆 ) ) → ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 12 | 11 | adantll | ⊢ ( ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝑆 ) ) → ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 13 | simplll | ⊢ ( ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝑆 ) ) → 𝑊 ∈ PreHil ) | |
| 14 | 4 | sselda | ⊢ ( ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝑆 ) ) → 𝑦 ∈ 𝑉 ) |
| 15 | 6 | adantr | ⊢ ( ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝑆 ) ) → 𝑥 ∈ 𝑉 ) |
| 16 | 8 7 1 9 | iporthcom | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 17 | 13 14 15 16 | syl3anc | ⊢ ( ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝑆 ) ) → ( ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 18 | 12 17 | mpbid | ⊢ ( ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝑆 ) ) → ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 19 | 18 | ralrimiva | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ 𝑆 ) → ∀ 𝑦 ∈ ( ⊥ ‘ 𝑆 ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 20 | 1 7 8 9 2 | elocv | ⊢ ( 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ↔ ( ( ⊥ ‘ 𝑆 ) ⊆ 𝑉 ∧ 𝑥 ∈ 𝑉 ∧ ∀ 𝑦 ∈ ( ⊥ ‘ 𝑆 ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 21 | 4 6 19 20 | syl3anbrc | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) |
| 22 | 21 | ex | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( 𝑥 ∈ 𝑆 → 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) ) |
| 23 | 22 | ssrdv | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → 𝑆 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) |