This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection (infimum) of a nonempty subset of CH belongs to CH . Part of Theorem 3.13 of Beran p. 108. Also part of Definition 3.4-1 in MegPav2000 p. 2345 (PDF p. 8). (Contributed by NM, 14-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chintcl | ⊢ ( ( 𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ Cℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inteq | ⊢ ( 𝐴 = if ( ( 𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅ ) , 𝐴 , Cℋ ) → ∩ 𝐴 = ∩ if ( ( 𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅ ) , 𝐴 , Cℋ ) ) | |
| 2 | 1 | eleq1d | ⊢ ( 𝐴 = if ( ( 𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅ ) , 𝐴 , Cℋ ) → ( ∩ 𝐴 ∈ Cℋ ↔ ∩ if ( ( 𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅ ) , 𝐴 , Cℋ ) ∈ Cℋ ) ) |
| 3 | sseq1 | ⊢ ( 𝐴 = if ( ( 𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅ ) , 𝐴 , Cℋ ) → ( 𝐴 ⊆ Cℋ ↔ if ( ( 𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅ ) , 𝐴 , Cℋ ) ⊆ Cℋ ) ) | |
| 4 | neeq1 | ⊢ ( 𝐴 = if ( ( 𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅ ) , 𝐴 , Cℋ ) → ( 𝐴 ≠ ∅ ↔ if ( ( 𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅ ) , 𝐴 , Cℋ ) ≠ ∅ ) ) | |
| 5 | 3 4 | anbi12d | ⊢ ( 𝐴 = if ( ( 𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅ ) , 𝐴 , Cℋ ) → ( ( 𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅ ) ↔ ( if ( ( 𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅ ) , 𝐴 , Cℋ ) ⊆ Cℋ ∧ if ( ( 𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅ ) , 𝐴 , Cℋ ) ≠ ∅ ) ) ) |
| 6 | sseq1 | ⊢ ( Cℋ = if ( ( 𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅ ) , 𝐴 , Cℋ ) → ( Cℋ ⊆ Cℋ ↔ if ( ( 𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅ ) , 𝐴 , Cℋ ) ⊆ Cℋ ) ) | |
| 7 | neeq1 | ⊢ ( Cℋ = if ( ( 𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅ ) , 𝐴 , Cℋ ) → ( Cℋ ≠ ∅ ↔ if ( ( 𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅ ) , 𝐴 , Cℋ ) ≠ ∅ ) ) | |
| 8 | 6 7 | anbi12d | ⊢ ( Cℋ = if ( ( 𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅ ) , 𝐴 , Cℋ ) → ( ( Cℋ ⊆ Cℋ ∧ Cℋ ≠ ∅ ) ↔ ( if ( ( 𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅ ) , 𝐴 , Cℋ ) ⊆ Cℋ ∧ if ( ( 𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅ ) , 𝐴 , Cℋ ) ≠ ∅ ) ) ) |
| 9 | ssid | ⊢ Cℋ ⊆ Cℋ | |
| 10 | h0elch | ⊢ 0ℋ ∈ Cℋ | |
| 11 | 10 | ne0ii | ⊢ Cℋ ≠ ∅ |
| 12 | 9 11 | pm3.2i | ⊢ ( Cℋ ⊆ Cℋ ∧ Cℋ ≠ ∅ ) |
| 13 | 5 8 12 | elimhyp | ⊢ ( if ( ( 𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅ ) , 𝐴 , Cℋ ) ⊆ Cℋ ∧ if ( ( 𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅ ) , 𝐴 , Cℋ ) ≠ ∅ ) |
| 14 | 13 | chintcli | ⊢ ∩ if ( ( 𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅ ) , 𝐴 , Cℋ ) ∈ Cℋ |
| 15 | 2 14 | dedth | ⊢ ( ( 𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ Cℋ ) |