This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inclusion in complement of complement. Part of Proposition 1 of Kalmbach p. 65. (Contributed by NM, 9-Aug-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ococss | ⊢ ( 𝐴 ⊆ ℋ → 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel | ⊢ ( 𝐴 ⊆ ℋ → ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ℋ ) ) | |
| 2 | ocorth | ⊢ ( 𝐴 ⊆ ℋ → ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ) → ( 𝑦 ·ih 𝑥 ) = 0 ) ) | |
| 3 | 2 | expd | ⊢ ( 𝐴 ⊆ ℋ → ( 𝑦 ∈ 𝐴 → ( 𝑥 ∈ ( ⊥ ‘ 𝐴 ) → ( 𝑦 ·ih 𝑥 ) = 0 ) ) ) |
| 4 | 3 | ralrimdv | ⊢ ( 𝐴 ⊆ ℋ → ( 𝑦 ∈ 𝐴 → ∀ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ( 𝑦 ·ih 𝑥 ) = 0 ) ) |
| 5 | 1 4 | jcad | ⊢ ( 𝐴 ⊆ ℋ → ( 𝑦 ∈ 𝐴 → ( 𝑦 ∈ ℋ ∧ ∀ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ( 𝑦 ·ih 𝑥 ) = 0 ) ) ) |
| 6 | ocss | ⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ 𝐴 ) ⊆ ℋ ) | |
| 7 | ocel | ⊢ ( ( ⊥ ‘ 𝐴 ) ⊆ ℋ → ( 𝑦 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ↔ ( 𝑦 ∈ ℋ ∧ ∀ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ( 𝑦 ·ih 𝑥 ) = 0 ) ) ) | |
| 8 | 6 7 | syl | ⊢ ( 𝐴 ⊆ ℋ → ( 𝑦 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ↔ ( 𝑦 ∈ ℋ ∧ ∀ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ( 𝑦 ·ih 𝑥 ) = 0 ) ) ) |
| 9 | 5 8 | sylibrd | ⊢ ( 𝐴 ⊆ ℋ → ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) ) |
| 10 | 9 | ssrdv | ⊢ ( 𝐴 ⊆ ℋ → 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) |