This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of the negative of a vector. (Contributed by NM, 28-Nov-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvs.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nvs.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| nvs.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| Assertion | nvm1 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ ( - 1 𝑆 𝐴 ) ) = ( 𝑁 ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvs.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nvs.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 3 | nvs.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 4 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 5 | 1 2 3 | nvs | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ - 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ ( - 1 𝑆 𝐴 ) ) = ( ( abs ‘ - 1 ) · ( 𝑁 ‘ 𝐴 ) ) ) |
| 6 | 4 5 | mp3an2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ ( - 1 𝑆 𝐴 ) ) = ( ( abs ‘ - 1 ) · ( 𝑁 ‘ 𝐴 ) ) ) |
| 7 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 8 | 7 | absnegi | ⊢ ( abs ‘ - 1 ) = ( abs ‘ 1 ) |
| 9 | abs1 | ⊢ ( abs ‘ 1 ) = 1 | |
| 10 | 8 9 | eqtri | ⊢ ( abs ‘ - 1 ) = 1 |
| 11 | 10 | oveq1i | ⊢ ( ( abs ‘ - 1 ) · ( 𝑁 ‘ 𝐴 ) ) = ( 1 · ( 𝑁 ‘ 𝐴 ) ) |
| 12 | 1 3 | nvcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) ∈ ℝ ) |
| 13 | 12 | recnd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) ∈ ℂ ) |
| 14 | 13 | mullidd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 1 · ( 𝑁 ‘ 𝐴 ) ) = ( 𝑁 ‘ 𝐴 ) ) |
| 15 | 11 14 | eqtrid | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( abs ‘ - 1 ) · ( 𝑁 ‘ 𝐴 ) ) = ( 𝑁 ‘ 𝐴 ) ) |
| 16 | 6 15 | eqtrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ ( - 1 𝑆 𝐴 ) ) = ( 𝑁 ‘ 𝐴 ) ) |