This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ntrivcvgmul . (Contributed by Scott Fenton, 19-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ntrivcvgmullem.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| ntrivcvgmullem.2 | ⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) | ||
| ntrivcvgmullem.3 | ⊢ ( 𝜑 → 𝑃 ∈ 𝑍 ) | ||
| ntrivcvgmullem.4 | ⊢ ( 𝜑 → 𝑋 ≠ 0 ) | ||
| ntrivcvgmullem.5 | ⊢ ( 𝜑 → 𝑌 ≠ 0 ) | ||
| ntrivcvgmullem.6 | ⊢ ( 𝜑 → seq 𝑁 ( · , 𝐹 ) ⇝ 𝑋 ) | ||
| ntrivcvgmullem.7 | ⊢ ( 𝜑 → seq 𝑃 ( · , 𝐺 ) ⇝ 𝑌 ) | ||
| ntrivcvgmullem.8 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | ||
| ntrivcvgmullem.9 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) | ||
| ntrivcvgmullem.a | ⊢ ( 𝜑 → 𝑁 ≤ 𝑃 ) | ||
| ntrivcvgmullem.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ 𝑘 ) ) ) | ||
| Assertion | ntrivcvgmullem | ⊢ ( 𝜑 → ∃ 𝑞 ∈ 𝑍 ∃ 𝑤 ( 𝑤 ≠ 0 ∧ seq 𝑞 ( · , 𝐻 ) ⇝ 𝑤 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ntrivcvgmullem.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | ntrivcvgmullem.2 | ⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) | |
| 3 | ntrivcvgmullem.3 | ⊢ ( 𝜑 → 𝑃 ∈ 𝑍 ) | |
| 4 | ntrivcvgmullem.4 | ⊢ ( 𝜑 → 𝑋 ≠ 0 ) | |
| 5 | ntrivcvgmullem.5 | ⊢ ( 𝜑 → 𝑌 ≠ 0 ) | |
| 6 | ntrivcvgmullem.6 | ⊢ ( 𝜑 → seq 𝑁 ( · , 𝐹 ) ⇝ 𝑋 ) | |
| 7 | ntrivcvgmullem.7 | ⊢ ( 𝜑 → seq 𝑃 ( · , 𝐺 ) ⇝ 𝑌 ) | |
| 8 | ntrivcvgmullem.8 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | |
| 9 | ntrivcvgmullem.9 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) | |
| 10 | ntrivcvgmullem.a | ⊢ ( 𝜑 → 𝑁 ≤ 𝑃 ) | |
| 11 | ntrivcvgmullem.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ 𝑘 ) ) ) | |
| 12 | eqid | ⊢ ( ℤ≥ ‘ 𝑁 ) = ( ℤ≥ ‘ 𝑁 ) | |
| 13 | uzssz | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ | |
| 14 | 1 13 | eqsstri | ⊢ 𝑍 ⊆ ℤ |
| 15 | 14 2 | sselid | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 16 | 14 3 | sselid | ⊢ ( 𝜑 → 𝑃 ∈ ℤ ) |
| 17 | eluz | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 𝑃 ∈ ( ℤ≥ ‘ 𝑁 ) ↔ 𝑁 ≤ 𝑃 ) ) | |
| 18 | 15 16 17 | syl2anc | ⊢ ( 𝜑 → ( 𝑃 ∈ ( ℤ≥ ‘ 𝑁 ) ↔ 𝑁 ≤ 𝑃 ) ) |
| 19 | 10 18 | mpbird | ⊢ ( 𝜑 → 𝑃 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 20 | 1 | uztrn2 | ⊢ ( ( 𝑁 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑘 ∈ 𝑍 ) |
| 21 | 2 20 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑘 ∈ 𝑍 ) |
| 22 | 21 8 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 23 | 12 19 6 4 22 | ntrivcvgtail | ⊢ ( 𝜑 → ( ( ⇝ ‘ seq 𝑃 ( · , 𝐹 ) ) ≠ 0 ∧ seq 𝑃 ( · , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑃 ( · , 𝐹 ) ) ) ) |
| 24 | 23 | simprd | ⊢ ( 𝜑 → seq 𝑃 ( · , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑃 ( · , 𝐹 ) ) ) |
| 25 | climcl | ⊢ ( seq 𝑃 ( · , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑃 ( · , 𝐹 ) ) → ( ⇝ ‘ seq 𝑃 ( · , 𝐹 ) ) ∈ ℂ ) | |
| 26 | 24 25 | syl | ⊢ ( 𝜑 → ( ⇝ ‘ seq 𝑃 ( · , 𝐹 ) ) ∈ ℂ ) |
| 27 | climcl | ⊢ ( seq 𝑃 ( · , 𝐺 ) ⇝ 𝑌 → 𝑌 ∈ ℂ ) | |
| 28 | 7 27 | syl | ⊢ ( 𝜑 → 𝑌 ∈ ℂ ) |
| 29 | 23 | simpld | ⊢ ( 𝜑 → ( ⇝ ‘ seq 𝑃 ( · , 𝐹 ) ) ≠ 0 ) |
| 30 | 26 28 29 5 | mulne0d | ⊢ ( 𝜑 → ( ( ⇝ ‘ seq 𝑃 ( · , 𝐹 ) ) · 𝑌 ) ≠ 0 ) |
| 31 | eqid | ⊢ ( ℤ≥ ‘ 𝑃 ) = ( ℤ≥ ‘ 𝑃 ) | |
| 32 | seqex | ⊢ seq 𝑃 ( · , 𝐻 ) ∈ V | |
| 33 | 32 | a1i | ⊢ ( 𝜑 → seq 𝑃 ( · , 𝐻 ) ∈ V ) |
| 34 | 1 | uztrn2 | ⊢ ( ( 𝑃 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑃 ) ) → 𝑘 ∈ 𝑍 ) |
| 35 | 3 34 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑃 ) ) → 𝑘 ∈ 𝑍 ) |
| 36 | 35 8 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑃 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 37 | 31 16 36 | prodf | ⊢ ( 𝜑 → seq 𝑃 ( · , 𝐹 ) : ( ℤ≥ ‘ 𝑃 ) ⟶ ℂ ) |
| 38 | 37 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑃 ) ) → ( seq 𝑃 ( · , 𝐹 ) ‘ 𝑗 ) ∈ ℂ ) |
| 39 | 35 9 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑃 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 40 | 31 16 39 | prodf | ⊢ ( 𝜑 → seq 𝑃 ( · , 𝐺 ) : ( ℤ≥ ‘ 𝑃 ) ⟶ ℂ ) |
| 41 | 40 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑃 ) ) → ( seq 𝑃 ( · , 𝐺 ) ‘ 𝑗 ) ∈ ℂ ) |
| 42 | simpr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑃 ) ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑃 ) ) | |
| 43 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( 𝑃 ... 𝑗 ) ) → 𝜑 ) | |
| 44 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑃 ) ) → 𝑃 ∈ 𝑍 ) |
| 45 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝑃 ... 𝑗 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑃 ) ) | |
| 46 | 44 45 34 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( 𝑃 ... 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
| 47 | 43 46 8 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( 𝑃 ... 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 48 | 43 46 9 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( 𝑃 ... 𝑗 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 49 | 43 46 11 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( 𝑃 ... 𝑗 ) ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ 𝑘 ) ) ) |
| 50 | 42 47 48 49 | prodfmul | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑃 ) ) → ( seq 𝑃 ( · , 𝐻 ) ‘ 𝑗 ) = ( ( seq 𝑃 ( · , 𝐹 ) ‘ 𝑗 ) · ( seq 𝑃 ( · , 𝐺 ) ‘ 𝑗 ) ) ) |
| 51 | 31 16 24 33 7 38 41 50 | climmul | ⊢ ( 𝜑 → seq 𝑃 ( · , 𝐻 ) ⇝ ( ( ⇝ ‘ seq 𝑃 ( · , 𝐹 ) ) · 𝑌 ) ) |
| 52 | ovex | ⊢ ( ( ⇝ ‘ seq 𝑃 ( · , 𝐹 ) ) · 𝑌 ) ∈ V | |
| 53 | neeq1 | ⊢ ( 𝑤 = ( ( ⇝ ‘ seq 𝑃 ( · , 𝐹 ) ) · 𝑌 ) → ( 𝑤 ≠ 0 ↔ ( ( ⇝ ‘ seq 𝑃 ( · , 𝐹 ) ) · 𝑌 ) ≠ 0 ) ) | |
| 54 | breq2 | ⊢ ( 𝑤 = ( ( ⇝ ‘ seq 𝑃 ( · , 𝐹 ) ) · 𝑌 ) → ( seq 𝑃 ( · , 𝐻 ) ⇝ 𝑤 ↔ seq 𝑃 ( · , 𝐻 ) ⇝ ( ( ⇝ ‘ seq 𝑃 ( · , 𝐹 ) ) · 𝑌 ) ) ) | |
| 55 | 53 54 | anbi12d | ⊢ ( 𝑤 = ( ( ⇝ ‘ seq 𝑃 ( · , 𝐹 ) ) · 𝑌 ) → ( ( 𝑤 ≠ 0 ∧ seq 𝑃 ( · , 𝐻 ) ⇝ 𝑤 ) ↔ ( ( ( ⇝ ‘ seq 𝑃 ( · , 𝐹 ) ) · 𝑌 ) ≠ 0 ∧ seq 𝑃 ( · , 𝐻 ) ⇝ ( ( ⇝ ‘ seq 𝑃 ( · , 𝐹 ) ) · 𝑌 ) ) ) ) |
| 56 | 52 55 | spcev | ⊢ ( ( ( ( ⇝ ‘ seq 𝑃 ( · , 𝐹 ) ) · 𝑌 ) ≠ 0 ∧ seq 𝑃 ( · , 𝐻 ) ⇝ ( ( ⇝ ‘ seq 𝑃 ( · , 𝐹 ) ) · 𝑌 ) ) → ∃ 𝑤 ( 𝑤 ≠ 0 ∧ seq 𝑃 ( · , 𝐻 ) ⇝ 𝑤 ) ) |
| 57 | 30 51 56 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑤 ( 𝑤 ≠ 0 ∧ seq 𝑃 ( · , 𝐻 ) ⇝ 𝑤 ) ) |
| 58 | seqeq1 | ⊢ ( 𝑞 = 𝑃 → seq 𝑞 ( · , 𝐻 ) = seq 𝑃 ( · , 𝐻 ) ) | |
| 59 | 58 | breq1d | ⊢ ( 𝑞 = 𝑃 → ( seq 𝑞 ( · , 𝐻 ) ⇝ 𝑤 ↔ seq 𝑃 ( · , 𝐻 ) ⇝ 𝑤 ) ) |
| 60 | 59 | anbi2d | ⊢ ( 𝑞 = 𝑃 → ( ( 𝑤 ≠ 0 ∧ seq 𝑞 ( · , 𝐻 ) ⇝ 𝑤 ) ↔ ( 𝑤 ≠ 0 ∧ seq 𝑃 ( · , 𝐻 ) ⇝ 𝑤 ) ) ) |
| 61 | 60 | exbidv | ⊢ ( 𝑞 = 𝑃 → ( ∃ 𝑤 ( 𝑤 ≠ 0 ∧ seq 𝑞 ( · , 𝐻 ) ⇝ 𝑤 ) ↔ ∃ 𝑤 ( 𝑤 ≠ 0 ∧ seq 𝑃 ( · , 𝐻 ) ⇝ 𝑤 ) ) ) |
| 62 | 61 | rspcev | ⊢ ( ( 𝑃 ∈ 𝑍 ∧ ∃ 𝑤 ( 𝑤 ≠ 0 ∧ seq 𝑃 ( · , 𝐻 ) ⇝ 𝑤 ) ) → ∃ 𝑞 ∈ 𝑍 ∃ 𝑤 ( 𝑤 ≠ 0 ∧ seq 𝑞 ( · , 𝐻 ) ⇝ 𝑤 ) ) |
| 63 | 3 57 62 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑞 ∈ 𝑍 ∃ 𝑤 ( 𝑤 ≠ 0 ∧ seq 𝑞 ( · , 𝐻 ) ⇝ 𝑤 ) ) |