This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The complement of a closure is open. (Contributed by NM, 11-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | cmclsopn | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∈ 𝐽 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | clsval2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = ( 𝑋 ∖ ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑆 ) ) ) ) |
| 3 | 2 | difeq2d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) = ( 𝑋 ∖ ( 𝑋 ∖ ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑆 ) ) ) ) ) |
| 4 | difss | ⊢ ( 𝑋 ∖ 𝑆 ) ⊆ 𝑋 | |
| 5 | 1 | ntropn | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑋 ∖ 𝑆 ) ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑆 ) ) ∈ 𝐽 ) |
| 6 | 4 5 | mpan2 | ⊢ ( 𝐽 ∈ Top → ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑆 ) ) ∈ 𝐽 ) |
| 7 | 1 | eltopss | ⊢ ( ( 𝐽 ∈ Top ∧ ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑆 ) ) ∈ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑆 ) ) ⊆ 𝑋 ) |
| 8 | 6 7 | mpdan | ⊢ ( 𝐽 ∈ Top → ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑆 ) ) ⊆ 𝑋 ) |
| 9 | dfss4 | ⊢ ( ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑆 ) ) ⊆ 𝑋 ↔ ( 𝑋 ∖ ( 𝑋 ∖ ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑆 ) ) ) ) = ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑆 ) ) ) | |
| 10 | 8 9 | sylib | ⊢ ( 𝐽 ∈ Top → ( 𝑋 ∖ ( 𝑋 ∖ ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑆 ) ) ) ) = ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑆 ) ) ) |
| 11 | 10 6 | eqeltrd | ⊢ ( 𝐽 ∈ Top → ( 𝑋 ∖ ( 𝑋 ∖ ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑆 ) ) ) ) ∈ 𝐽 ) |
| 12 | 11 | adantr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑋 ∖ ( 𝑋 ∖ ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑆 ) ) ) ) ∈ 𝐽 ) |
| 13 | 3 12 | eqeltrd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∈ 𝐽 ) |